EXPRESIÓN TRANSITORIA MEDIADA POR AGROBACTERIUM PARA EL ESTUDIO DE PROTEÍNAS DE RESISTENCIA DE YUCA

Carlos Romero

Resumen


En este artículo se aborda el principio de la expresión transitoria mediada por Agrobacterium tumefaciens y su contribución en el estudio interacciones proteína-proteína en el campo de la fitopatología molecular. Adicionalmente, se expone el estado actual sobre la implementación de ensayos de expresión transitoria para el estudio de proteínas de resistencia de la yuca a la bacteriosis vascular.


Citas


Aguilera, M. (2012). La yuca en el caribe colombiano: de cultivo ancestral a agroindustrial (Documentos de Trabajo sobre Economía Regional y Urbana No. 158). Cartagena. Retrieved from http://www.banrep.gov.co/en/node/25497

Alvarez, E., Llano, G. A., & Mejía, J. F. (2012). Cassava diseases in Latin America, Africa and Asia. In R. Howeler (Ed.), The cassava handbook – A reference manual based on the asian regional cassava training course, held in Thailand. (pp. 258–304). Cali: CIAT.

Arrieta-Ortiz, M. L., Rodríguez-R, L. M., Pérez-Quintero, Á. L., Poulin, L., Díaz, A. C., Arias Rojas, N., … Bernal, A. (2013). Genomic Survey of Pathogenicity Determinants and VNTR Markers in the Cassava Bacterial Pathogen Xanthomonas axonopodis pv. Manihotis Strain CIO151. PLoS ONE, 8(11), e79704. http://doi.org/10.1371/journal.pone.0079704

Bally, J., Jung, H., Mortimer, C., Naim, F., Philips, J. G., Hellens, R., … Waterhouse, P. M. (2018). The Rise and Rise of Nicotiana benthamiana: A Plant for All Reasons. Annu. Rev. Phytopathol, 56, 405–426.

Bart, R., Cohn, M., Kassen, A., McCallum, E. J., Shybut, M., Petriello, A., … Staskawicz, B. J. (2012). High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences, 109(28), E1972–E1979. http://doi.org/10.1073/pnas.1208003109

Bhat, R. A., Lahaye, T., & Panstruga, R. (2006). interactions by fluorophore-based methods. Plant Methods, 2(12), 1–14. http://doi.org/10.1186/1746-4811-2-12

Bigeard, J., Colcombet, J., & Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539. http://doi.org/10.1016/j.molp.2014.12.022

Ceballos, H., Kawuki, R. S., Gracen, V. E., Yencho, G. C., & Hershey, C. H. (2015). Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 128(9), 1647–1667. http://doi.org/10.1007/s00122-015-2555-4

Chen, L., Chen, Y., Wood, D. W., & Nester, E. W. (2002). A New Type IV Secretion System Promotes Conjugal Transfer in Agrobacterium tumefaciens. Journal of Bacteriology, 184(17), 4838–4845. http://doi.org/10.1128/JB.184.17.4838

Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector-Triggered Immunity: From Pathogen Perception to Robust Defense. Annual Review of Plant Biology, 66(October 2015), 487–511. http://doi.org/10.1146/annurev-arplant-050213-040012

Díaz Tatis, P. A. (2016). Transference of RXam2 and Bs2 genes to confer resistance against cassava bacterial blight ( CBB ). Universidad Nacional de Colombia.

Díaz Tatis, P. A., Herrera Corzo, M., Ochoa Cabezas, J. C., Medina Cipagauta, A., Prías, M. A., Verdier, V., … López Carrascal, C. E. (2018). The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis. Planta, 247(4), 1031–1042. http://doi.org/10.1007/s00425-018-2863-4

Díaz Tatis, P., Bernal, A. J., & López, C. E. (2014). Transient GUS gene expression in cassava (Manihot esculenta Crantz) using Agrobacterium tumefaciens leaf infiltration. Revista MVZ Córdoba, 19(3), 4338–4349.

Gelvin, S. B. (2017). Integration of Agrobacterium T-DNA into the Plant Genome. Annual Review of Genetics, 51(August), 195–217.

Herrera-estrella, A., Chen, Z., Montagu, M. Van, & Wang, K. (1988). VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA–protein complex at the 5’ terminus of T-strand molecules. The EMBO Journal, 7(13), 4055–4062.

Kapila, J., De Rycke, R., Van Montagu, M., & Angenon, G. (1997). An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Science, 122(1), 101–108. http://doi.org/10.1016/S0168-9452(96)04541-4

Krenek, P., Samajova, O., Luptovciak, I., Doskocilova, A., Komis, G., & Samaj, J. (2015). Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnology Advances, 33(6), 1024–1042. http://doi.org/10.1016/j.biotechadv.2015.03.012

López, C. E., & Bernal, A. J. (2012). Cassava Bacterial Blight: Using Genomics for the Elucidation and Management of an Old Problem. Tropical Plant Biology, 5(1), 117–126. http://doi.org/10.1007/s12042-011-9092-3

Lozano, J., & Sequeira, L. (1974). Bacterial blight of cassava in Colombia: Etiology. Phytopathology, 64, 74–82.

Ma, L., Lukasik, E., Gawehns, F., & Takken, F. L. W. (2012). The Use of Agroinfiltration for Transient Expression of Plant Resistance and Fungal Effector Proteins in Nicotiana benthamiana Leaves. In M. D. Bolton & B. P. H. J. Thomma (Eds.), Plant Fungal Pathogens: Methods and Protocols (Vol. 835, pp. 61–74). Amsterdam: SpringerLink. http://doi.org/10.1007/978-1-61779-501-5_4

McCallum, E. J., Anjanappa, R. B., & Gruissem, W. (2017). Tackling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Current Opinion in Plant Biology, 38, 50–58. http://doi.org/10.1016/j.pbi.2017.04.008

Medina, C. A., Reyes, P. A., Trujillo, C. A., Gonzalez, J. L., Bejarano, D. A., Montenegro, N. A., … Bernal, A. J. (2017). The role of type three effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Molecular Plant Pathology, 1–14.

Peyret, H., & Lomonossoff, G. P. (2015). When plant virology met Agrobacterium: the rise of the deconstructed clones. Plant Biotechnology Journal, 13, 1121–1135. http://doi.org/10.1111/pbi.12412

Ramírez, E., Szurek, B., & López, C. E. (2018). Factores que afectan la expresión transitoria del gen GUS en yuca (Manihot esculenta Crantz). Revista Colombiana de Biotecnología, XX(2), 57–67. http://doi.org/10.15446/rev.colomb.biote.v20n2.77063

Román, V. (2012). Identificación de interactores proteicos de RXam2, una proteína candidata de resistencia, implicados en la ruta de señalización de defensa contra la bacteriosis vascular de la yuca. Universidad Nacional de Colombia.

Simmons, C. W., Vandergheynst, J. S., & Upadhyaya, S. K. (2009). A model of agrobacterium tumefaciens vacuum infiltration into harvested leaf tissue and subsequent in planta transgene transient expression. Biotechnology and Bioengineering, 102(3), 965–970. http://doi.org/10.1002/bit.22118

Stachel, S. E., Messens, E., Montagu, M. Van, & Zambryski, P. (1985). Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 318(19).

Winans, S. C. (1992). Two-Way Chemical Signaling in Agrobacterium-Plant Interactions. Microbiological Reviews, 56(1), 12–31.

Yamamoto, T., Hoshikawa, K., Ezura, K., Okazawa, R., Fujita, S., Takaoka, M., … Miura, K. (2018). Improvement of the transient expression system for production of recombinant proteins in plants. Scientific Reports, 8, 1–10. http://doi.org/10.1038/s41598-018-23024-


Refbacks

  • No hay Refbacks actualmente.


Creative Commons License
Este trabajo está licenciado bajo la licencia Creative Commons Attribution 3.0 .