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Another look at the spheres
Yuka Machino

Abstract

In this work, I provide another method of �nding the surface area
of a sphere, by projecting each point on the sphere to the faces of
a cube. To understand how I do this, �rst, I demonstrate a similar
method but in two dimensions by breaking up the circumference of
a circle and projecting it to sides of a square. In each subsection, I
start with de�ning these projections, before moving on to �nding the
circumference/surface area.
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Otra mirada a la esfera

Resumen

En este trabajo, proporciono otro método para encontrar el área de
la super�cie de una esfera, proyectando cada punto de la esfera a las
caras de un cubo. Para entender cómo hago esto, primero, demuestro
un método similar pero en dos dimensiones al romper la circunferen-
cia de un círculo y proyectarlo a los lados de un cuadrado. En cada
subsección, comienzo de�niendo estas proyecciones antes de pasar a
buscar la circunferencia/ área de super�cie.

Palabras y frases clave: Esfera, Integración, Proyección

1 Introduction

When we look at a sphere from a given direction, it looks just like a circle
with area πr2 where r is the radius of the sphere. When I �rst found out that
the surface area of a sphere is 4πr2, I wanted to �nd an intuitive reason why
the surface area is four times the area of the circle which we see when we
look at the sphere from one direction. In order to do so, I wanted to break
up the surface of the sphere and reconstruct four circles of radius r from it.
Although this is not what I ended up doing, the main idea in this work of
projecting a sphere to a �at surface was motivated in this way.

2000 years ago, Archimedes also used projection in order to �nd the
surface area of the sphere. In Archimedes' Hat Box Theorem he stated that
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the surface area of a sphere is conserved when it is projected to the label of a
cylinder exactly containing the sphere. This means that the surface area of a
sphere equals the surface area of the label of the cylinder with hight 2r, and
circumference 2πr hence proving that the surface area of the label equals the
surface area of the sphere = 2πr × 2r = 4πr2. [1].

Figure 1:

The main di�erence between our proof and Archimedes' is that in our
proof, we project the sphere to the faces of a cube instead of a cylinder. By
introducing the idea of �point densities�, we project one point on the sphere
to multiple surfaces simultaneously, enabling the sphere to be �broken up� to
the di�erent faces of the cube.

2 De�ning densities and projections

Firstly, we introduce the terms and techniques which we use in order to
obtain circumference of the circle.

2.1 Point density and Solid Line Value

For every point on a line, let us assign a density to that point, where 1 is the
default density. For example, a point of density 0.5 can be thought of as a
point that is half transparent, like a point drawn by a highlighter.
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Let us denote D(x) the density of the point x.
Then let us de�ne the solid line value of L, S(L), as

S(L) =

∫ l

0

D(x) dx

Figure 2:

2.2 Projecting a line at an angle

Consider the line L of length l, with uniform density d, which makes an angle
θ with the x axis. We de�ne a projection of this onto the x axis where line
L is mapped to its shadow L′ in such a way so that the solid line value is
conserved (i.e. S(L′) = S(L)). As the length of S(L′) is l cos θ, we de�ne L′

to have uniform density d
cos θ

so that:

S(L′) =
d

cos θ
× l cos θ = d× l = S(L)
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Figure 3:

2.3 Orthogonal projections

We de�ne an orthogonal projection as a decomposition and projection of a
line of uniform density 1 onto both the x and y axes.

Firstly, we separate line L into two lines, L1 and L2 so that they have
uniform density cos2 θ and sin2 θ respectively.

Figure 4:

S(L1) + S(L2) = (cos2 θ + sin2 θ)× S(L) = S(L).
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We project the two lines L1 and L2 onto the x axis and y axis creating
two images, LA and LB respectively.

By the de�nition of a projection, S(LA) = S(L1) and

density* of LA = density of L1 ×
1

cos θ
= cos2 θ × 1

cos θ
= cos θ

Similarly S(LB) = S(L2) and density of LB = sin θ.

Figure 5:

Hence

S(LA) + S(LB) = S(L1) + S(L2) = S(L).

So for any angle θ, an orthogonal projection can decompose line L into two
lines, LA and LB with density cos θ and sin θ.

(Here, we de�ne the density of a line to be d when the line has uniform
point density of d throughout.)

3 Obtaining the circumference of a circle

In a similar way to the orthogonal projection of a line, we can project a circle
onto sides of a square.
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Figure 6:

Due to the symmetry of the projection, each quarter of a circle is decom-
posed in exactly the same way. Therefore, it su�ces to show what happens
to the top right corner only.

A circle can be interpreted as the limit of a regular polygon as the number
sides tends to in�nity. For a regular polygon, we can apply the orthogonal
projections. By looking at the density distribution on the x axis as the num-
ber of sides tends to ∞, we will determine the density distribution obtained
by applying the orthogonal projection on the circle.

We create a quarter of a polygon by dividing the quarter circle into n
equal arcs and connecting its end points with straight lines.

Let nθ = π
2
. Let R be the radius of the circle. P0 to Pn are endpoints

of the arc where Pi has coordinates (R cos iθ, R sin iθ), and L1 to Ln are the
segments joining them. The gradient of line Li = PiPi−1 is greater than the
gradient of the tangent to the circle at Pi−1 and less than the gradient of the
tangent to the circle at Pi. As the tangent at Pi is perpendicular to OPi, the
tangent at Pi makes an angle π

2
− iθ with the x axis. So for each angle αi

that Li makes with the x axis,

π

2
− iθ < αi <

π

2
− (i− 1)θ.

Let LA and LB be the results of the projection of the quarter polygon onto
the x axis and y axis respectively. So for all points x on LA, ∃i : 1 ≤ i ≤ n
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Figure 7:

so that

R cos iθ ≤ x < R cos(i− 1)θ ⇒ D(x) = cosαi ⇒ sin(i− 1)θ < D(x) < sin iθ.

Let γ : 0 ≤ γ < π
2
be such that, x = R cos γ. Since ∃i : (i− 1)θ < γ ≤ iθ

sin(γ − θ) ≤ sin(i− 1)θ < D(x) ≤ sin iθ < sin(γ + θ)

As the polygon tends towards a circle, n → ∞ and θ → 0.

sin(γ − θ) → sin γ and sin(γ + θ) → sin γ

So for a circle,

D(x) = D(R cos γ) = sin γ

Because the way in which densities are assigned to the x and y axes
is symmetrical, S(LA) = S(LB). As the overall line value is conserved in
projection, S(LA) + S(LB) = 2S(LA) = S(1

4
circumference). So

4× 2S(LA) = 8S(LA) = circumference of whole circle
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Figure 8:

S(LA) =

∫ R

0

D(x) dx =

∫ R

0

D(R cos γ) d(R cos γ)

=

∫ 0

π
2

sin γ(−R sin γ) dγ

= R

∫ 0

π
2

− sin2 γ dγ = R

∫ π
2

0

sin2 γ dγ

= R

∫ π
2

0

1− cos 2γ

2
dγ

= R
[γ
2
− sin 2γ

4

]π
2

0

=
Rπ

4

⇒ circumference = 8S(LA) = 8× Rπ

4
= 2πR.
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4 Application in 3 dimensions

4.1 Solid Area Value

We de�ne the solid area value S(P ) of an area P in a similar way to the solid
length value:

S(P ) =

∫∫
P

D(x, y) dx dy

=

∫∫
P

D(r, θ) r dr dθ

Figure 9:

4.2 Projecting a plane at an angle

Consider the shape P , with uniform density d which is in a plane which
makes an angle θ with the xy plane. We de�ne a projection of this onto the
xy plane where P is projected to its shadow P ′ in such a way so that solid
area value is conserved (i.e. S(P ′) = S(P )). The width of P ′ and P are
equal, and the height of P ′ is h cos θ, hence

area of P ′ = area of P × cos θ.

121



Espacio Matemático Vol. 2 No. 2 (2021), pp. 113�129

Figure 10:

We de�ne P ′ to have a uniform density of d
cos θ

throughout, so that:

S(P ′) =
d

cos θ
×area of P ′ =

d

cos θ
×cos θ×area of P = d×area of P = S(P ).

4.3 Decomposing a shape in three dimensions

Let α, β, γ be the angles the plane Q containing the shape P makes with
the yz, zx, and xy planes respectively.

Firstly, we prove that cos2 α + cos2 β + cos2 γ = 1.
Let n be the vector normal toQ through the origin, meetingQ at (a, b, c).

Then

a = |n| cosα
b = |n| cos β
c = |n| cos γ

⇒ |n|2 = a2 + b2 + c2

= |n|2(cos2 α + cos2 β + cos2 γ)

⇒ cos2 α + cos2 β + cos2 γ = 1
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Figure 11:

Figure 12:

4.4 Orthogonal projections in three dimensions

Let P be a shape with uniform density 1. And let α, β, γ be the angles shape
P makes with the yz, zx and xy planes respectively. In a similar way as the
orthogonal projections in two dimensions, we separate P into three shapes
P1, P2 and P3 with uniform density cos2 α, cos2 β and cos2 γ respectively.

S(P1) + S(P2) + S(P3) = (cos2 α + cos2 β + cos2 γ)× S(P ) = S(P ).

Figures 13 and 14 are special cases of this projection where the original
shape is a triangle. However, this method works for any shape, as the ratio
of the solid area value of each of the projected shape to the original shape is
only dependent on the angle of the projections.
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Figure 13:

We then project P1, P2 and P3 perpendicularly to the yz, zx and xy planes
to create images A, B and C, respectively.

Figure 14:

By the de�nition of a projection, S(P1) = S(A) and

density** of A = density of P1 ×
1

cosα
= cos2 α× 1

cosα
= cosα.

Similarly S(P2) = S(B), density of B = cos β, S(P3) = S(C) and density
of C = cos γ.
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Figure 15:

Hence

S(A) + S(B) + S(C) = S(P1) + S(P2) + S(P3) = S(P )

So the orthogonal projection decomposes a shape of density 1 to three
shapes with density cosα, cos β and cos γ.

(Here we de�ne the density of a plane to be d, when the plane has uniform
point density of d throughout.)

5 Obtaining the surface area of a sphere

5.1 Projecting a sphere to a cube

For the surface area of the sphere with equation x2+y2+z2 = R2, we project
the vertices of the polyhedron onto the six faces of a cube with equations,

x = ±R y = ±R z = ±R.

As points will be projected to each of the six faces in the same way, we
will calculate the solid area value of the plane z = −R only. Each point will
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Figure 16:

be projected on to one xy, one yz and one zx plane depending on which of
the two parallel planes the point is closer to.

As with the circle, we can approximate the sphere by a polyhedron taking
points on the sphere at regular intervals and connecting them to makes faces.

Figure 17:

The sphere can be interpreted as the limit as the number of faces tends
towards in�nity. Therefore, for a point on the sphere with coordinates p, q
and s, we perform the orthogonal projection of that point treating it as an
in�nitely small plane with inclination equivalent to that of the tangent at
that point.
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To work out the angle of intersection of the tangent at V with z = −R,
we take the plane containing M = (0, 0, −R), V, and O.

Figure 18:

OM is perpendicular to the xy plane (call this N), and OV is perpen-
dicular to the tangent plane at V (call this TV ), so the angle at which lines
TV and N meet in this cross section is the angle of intersection of the planes
TV and N . Let γ = ∠V OM . As OM is perpendicular to the xy plane,
dropping a perpendicular onto OM from V preserves the z coordinate, so
|OV | cos γ = R cos γ = |s|. By the de�nition of a projection, we know that
the density projected onto point (p, q) on N is equal to cos of the angle
between N and the tangent plane at (p, q, s). Therefore:

density at point (p, q) = cos γ =
|s|
R

=

√
R2 − p2 − q2

R
.

5.2 Calculating the solid area value of each face

To calculate the solid area value of the circle with varying point density, we
use polar coordinates. We integrate as r varies between 0 and R(the radius
of the projected circle), and as θ varies between 0 and 2π.
Let r =

√
p2 + q2 then

D(r, θ) =

√
R2 − r2

R
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S(N) =

∫ 2π

0

∫ R

0

D(r, θ)r dr dθ

=

∫ 2π

0

∫ R

0

√
R2 − r2

R
r dr dθ

Let r = R sinσ

=

∫ 2π

0

∫ π
2

0

√
1− sin2 σ R sinσ dR sinσ dθ

=

∫ 2π

0

∫ π
2

0

cosσR sinσ
dR sinσ

dσ
dσ dθ

= R2

∫ 2π

0

∫ π
2

0

cos2 σ sinσ dσ dθ

= R2

∫ 2π

0

[
− cos3 σ

3

]π
2

0
dθ

= R2

∫ 2π

0

1

3
dθ

= R22π

3

As this is one of six faces, overall, the surface area of the sphere is

R22π

3
× 6 = 4πR2

.

6 Summary

In this work, I introduced a di�erent method of obtaining the surface area
of a sphere. By introducing the idea of points with �densities�, I reduced a
three dimensional problem to an integration problem in two dimensions. The
method of projecting and decomposing a curved surface can be applied to
any curved surface that is di�erentiable. Therefore it may be possible to use
this method to �nd the surface area of other curved surfaces.

128



Espacio Matemático Vol. 2 No. 2 (2021), pp. 113�129

7 Acknowledgements

The author thanks Dr. Brian Brooks for proofreading and giving feedback
for the paper.

References

[1] Donald Simanek, Lock Haven University, Archimedes' Hat-Box Theo-

rem, https://www.lockhaven.edu/~dsimanek/puzzles/hatbox.html

Yuka Machino (yukam997@mit.edu)

Massachusetts Institute of Technology

129


