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Using Direct and Contructive Methods

for the Existence of Origami Models

with Given Boundary Conditions1

R. Geretschläger, S.L. Keeling

Abstract

Whenever a unit square is folded to create an origami model in three-

dimensional space, the edge of the paper forms a closed curve in space with

a total length equal to four units. In this paper, some of the restrictions

applicable to such resulting closed curves are derived in the case of classic

origami models, in which none of the sections of the folded paper is curved

in any way. This allows us to restrict the methods applied to those of classic

euclidean geometry. Noting that it is of interest to determine origami models

whose edges coincide with a polyline ful�lling the required conditions, we then

proceed to show some methods for reconstructing the origami model if the

boundary is known. Finally, some concrete reconstructions are demonstrated.
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Uso de métodos directos y constructivos para la existencia
de modelos de origami con condiciones límite dadas

Resumen

Siempre que una unidad cuadrada se pliega para crear un modelo de origami

en un espacio tridimensional, el borde del papel forma una curva cerrada en el

espacio con una longitud total igual a cuatro unidades. En este trabajo, algunas

de las restricciones aplicables a estas curvas cerradas resultantes se derivan en

el caso de los modelos clásicos de origami, en los que ninguna de las secciones

del papel plegado está curvada de ninguna manera. Esto nos permite restringir

los métodos aplicados a los de la geometría clásica euclídea. Observando que

es de interés determinar modelos de origami cuyos bordes coincidan con una

polilínea que cumpla con las condiciones requeridas, procedemos a mostrar

algunos métodos para reconstruir el modelo de origami si se conocen los límites.

Finalmente, se muestran algunas reconstrucciones concretas.

Palabras y frases clave: origami, reconstrucción, problema inverso.
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1 Introduction

Whenever a unit square is folded to create an origami model in three-dimensional
space, the edge of the paper forms a closed curve in space with a total length equal
to four units. It is quite obvious that the model fully determines its edge, i.e. the
closed boundary curve of the model. An interesting question resulting in this context
is to �nd out under which circumstances we can turn this around. In other words,
when is it possible to derive the structure of the entire model from knowledge of its
boundary.

To this purpose, we will restrict ourselves here to classic origami models, in which
none of the paper is curved in any way. Restricting consideration to plane sectors
on the resulting origami models in this way, it is possible to apply methods of classic
euclidean geometry. (Note that this is an alternative to the numerical approach
investigated by the authors in [2] for the more general case.) An example of such a
reconstruction is shown in Figure 1. The bounding polyline shown on the left yields
the simple origami model on the right.

Figure 1: a bounding polyline and its associated origami model

This origami model is certainly not unique, since any sink-fold of the inside peak
creates a new origami model with the same bounding polyline. It is, however, rea-
sonable to consider this as a minimal kind of triangulation of the polyline (although
two of the four plane sectors are, in fact, quadrilaterals, of course).

We can assume that we will be able to �nd such triangulations for many other
appropriate closed polylines. In fact, it was shown in [1] that this is indeed always
the case if some reasonable conditions are met by the boundary of the folded paper,
and that a solution to the associated inverse problem can be computed in polynomial
time. While such a resulting origami model will generally not be unique, we might
naively assume that there should always exist a �simplest� such model in some sense.
As we shall see, this will not necessarily be the case.

In this paper, we will attempt to illuminate the question of reconstruction in
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three steps. First of all, we will consider restrictions on the polyline that must be
satis�ed in order for an origami model with the given polyline as a boundary to exist
if we assume that we are starting o� from a unit square. Next, we will derive some
general basic theorems of reconstruction, which we will then apply in the �nal section
to some concrete reconstructions.

From a mathematical standpoint, we will be using some shortcuts in terminology.
A �sheet of paper� will be assumed to be a plane embedded in R3. A �unit square�
will be a square section of such a plane with sides of unit length. An �origami model�
will be a connected collection of plane objects that can result from the unit square
by folding procedures. (What exactly constitutes a legitimate folding procedure will
not be precisely de�ned here, but the meaning in the given context is assumed to be
clear.) The plane sections of the origami model will be referred to as �facets� of the
origami model, and its edges will be referred to as �creases� if they are not part of
the bounding polyline.

For the moment, we will assume that the origami models are in general not �at,
but rather of a general three-dimensional nature. The special case of �at-folding will
be touched upon in section 5.

Before we begin, it may be of interest to note that we are using the unit square
as a starting-o� point here because of its traditional nature in practical origami.
An interesting alternative would be to consider what happens with a unit circle as
the folding medium, and what happens to its boundary. It is quite obvious that the
restrictions on the circle will be quite severe. For now, however, practical restrictions
in space and time limit us to one type of folding medium, and the discussion of folding
the unit circle will have to wait for some other time and place.

2 Restrictions on the Polyline

There are numerous restrictions both to polylines that could possibly be boundaries
of origami models folded from a unit square, and to the origami models corresponding
to such polylines. Some of these restrictions are quite obvious. For instance, not only
must the total length of the polyline be equal to four units, the fact that the edges
of the unit square are at right angles to each other in the corners must obviously
yield restrictions on the line segments of the polylines that result from these edges.
The polyline must therefore consist of four sections, each of unit length, obeying
some speci�c corner angle restrictions. Furthermore, the area of the unit square is
equal to one square unit, and this must obviously also be the case for the sum of the
areas of the facets of the origami model. In this section, we will consider some of the
restrictions on the polyline that make it a candidate for the boundary of an origami
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model.

First of all, we require the following, seemingly obvious, preliminary result.

Theorem 1: Let P and Q be points on a sheet of paper s, and let P ′ and Q′ be
the points in which they come to lie in some origami model folded from a unit square
embedded in s and containing P and Q. Then P ′Q′ ≤ PQ certainly holds.

Proof: Consider the line segment joining P to Q in s. If we let {ci} denote the set
of all lines ci in s, sections of which map to creases c′i in the origami model, we note
that PQ intersects some of these lines ci. Assume that PQ intersects c1, c2, . . . , ck in
points C1, C2, . . . , Ck, with indices chosen such that the points P,C1, C2, . . . , Ck, Q
lie on PQ in this order. If C ′1, C

′
2, . . . , C

′
k are their maps in the origami model, we

have a polyline P ′C ′1, C
′
1C
′
2, . . . , C

′
kQ
′ joining P ′ and Q′ in the model in such a way

that each segment of the polyline lies completely in a facet of the origami model, as
illustrated in Figure 2.

Figure 2: folding PQ

This means that the length of each segment of the polyline is equal to the length
of the respective segment in s, and the total length of the polyline is therefore equal
to the length of PQ. By the triangle inequality, the distance P ′Q′ in R3 is certainly
not greater than the length of the polyline joining P ′ to Q′ (in fact, it is less if the
set {ci} is not empty), and the proof is complete.

�

A related result is the following.

Theorem 2: Let r1 and r2 be line segments on a unit square u with a common
endpoint E, and let ϕ be the angle contained by the two line segments (with 0◦ <
ϕ ≤ 180◦). Let E ′ be the point in which E comes to lie in some origami model folded
from u, and let r′1 and r′2 be the line segments emanating from E ′ resulting from the
parts of r1 and r2 next to E that come to lie in a common facet with E ′. (Note that
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r′1 and r′2 need not lie in a common facet.) Let ϕ′ be the angle contained by r′1 and
r′2 (with 0◦ ≤ ϕ′ ≤ 180◦). Then ϕ′ ≤ ϕ certainly holds.

Proof: Since r′1 and r′2 each lie completely in a facet of the origami model with
E, there exist points X ′1 and X ′2 on r′1 and r′2 respectively, equidistant from E, as
shown in Figure 3. Letting X1 and X2 denote their corresponding points on r1 and
r2 respectively, it follows that EX1 = EX2 = E ′X ′1 = E ′X ′2 holds. Note that ϕ

′ = ϕ
will always hold if there is no crease through E in the origami model, i.e. if r′1 and
r′2 lie in the same facet. If there is, we will certainly have ϕ′ < ϕ.

Figure 3: folding an angle

Naming this distance x and applying Theorem 2, we obtain

cosϕ′ =
2x2 −X ′1X ′22

2x2
≥ 2x2 −X1X

2
2

2x2
= cosϕ

from triangles EX1X2 and E ′X ′1X
′
2, which yields ϕ′ ≤ ϕ, as claimed.

�

With these two preliminary observations at hand, we are now ready to charac-
terize the boundaries of origami models folded from unit squares.

If we are given a unit square u with corners A1, A2, A3 and A4, and u is folded
into an origami model with the boundary b as illustrated in Figure 4, the bound-
ary b is certainly a closed polyline with the total length four, on which points A′i
corresponding to the respective corners of u must lie. Since the sides of u meet at
right angles in each corner of u, and the angles in an origami model must be smaller
than (or equal to) the corresponding angles in the original unit square u according to
Theorem 2, we see that the angles at which segments of the polyline boundary meet
in the points A′i must be right or acute. We can therefore sum up these observations
in the �rst boundary condition that b must ful�ll.
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(B1) The boundary b of an origami model is a closed polyline of length four.
There exist four vertices A′1, A

′
2, A

′
3 and A′4 on the polyline such that the sum of the

lengths of the line segments joining each pair A′i and A′i+1 (with all indices taken
modulo 4) equals one and the angles in which the segments of b meet in each of the
vertices A′i are either right or acute.

As a next step, we consider points X and Y on the sides A1A2 and A2A3 of u
respectively, as in Figure 4.

Figure 4:

The length of the line segment is given by the expression

XY =
√
A2X2 + A2Y 2.

By Theorem 2, we know that X ′Y ′ ≤ XY certainly holds, and since the length of
segment A2X is equal to the sum of the lengths of the segments joining A′2 and X ′

(as the length of A2Y is equal to the sum of the lengths of the segments joining A′2
and Y ′), b must also ful�ll the following second boundary condition.

(B2) If X ′ is a point between A′i−1 and A′i on b and Y ′ a point between A′i and
A′i+1 (indices taken modulo 4), and x the sum of the lengths of the line segments
joining X ′ and A′i and y the sum of the lengths of the line segments joining Y ′ and
A′i, the distance between X ′ and Y ′ must ful�ll the condition X ′Y ′ ≤

√
x2 + y2.

A similar condition must also follow for points on opposite sides of u, which we
consider in Figure 5.

Let X and Y be points on the sides A1A2 and A3A4 of u respectively. In this
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Figure 5: XY on a folded square

case, the length of XY is given by the expression

XY =
√

12 + |A1X − A4Y |2.

The analogous argument to the one just given for the second boundary condition
then yields the third boundary condition.

(B3) If X ′ is a point between A′i and A
′
i+1 on b and Y ′ a point between A′i−1 and

A′i−2 (indices taken modulo 4), and x the sum of the lengths of the line segments
joining A′i and X

′ and y the sum of the lengths of the line segments joining A′i−1 and

Y ′, the distance between X ′ and Y ′ must ful�ll the condition X ′Y ′ ≤
√

1 + |x− y|2.

3 Theorems of Reconstruction

If the bounding polyline of an origami model is given, the creases of the model must
obey certain laws with respect to the line segments comprising the polyline. In this
section, we will concern ourselves with the identi�cation of possible positions of such
creases relative to the segments of the polyline. As a �rst step toward a practical
realisation of a reconstruction, we must consider how the edge of the unit square can
be folded and how the corners of the unit square can be folded.

Theorem 3: Let s be a sheet of paper and ` a line in s. The sheet s is folded
by a single fold on a crease c at a dihedral angle θ (0◦ ≤ θ < 180◦) in such a way
that c intersects ` in a point V at an acute angle ϕ (0◦ < ϕ ≤ 90◦). Assume that c
remains �xed in R3 and the two parts of ` are mapped to rays `1 and `2 by the fold.
Then c is perpendicular to the angle bisector of `1 and `2.
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Proof: Let us assume that s lies in the [xy] coordinate plane, with c in the
x-axis and V in the origin, as shown in Figure 6. Line ` is composed of points with
coordinates (x, y, 0) satisfying the equation x = ay for some real parameter a = cotϕ.
Speci�cally, points E1(a, 1, 0) and E2(−a,−1, 0) lie on `. Folding s at the dihedral
angle θ, we place the folded sheet s′ in such a way that c remains on the x-axis and
s′ is symmetric with respect to the [xz] coordinate plane. E1 then folds (i.e. maps)
to E ′1(cotϕ, sin θ

2
,− cos θ

2
) and E2 to E ′2(− cotϕ,− sin θ

2
,− cos θ

2
).

Figure 6: �rst theorem of reconstruction

The ray `1 =
−−→
V E ′1 is therefore symmetric to `2 =

−−→
V E ′2 with respect to the z-

axis. Since the angle bisector of `1 and `2 therefore lies in the z-axis, it is certainly
perpendicular to the crease c, which lies in the x-axis, as claimed.

�

An immediate consequence of this result is the following �rst step towards actual
reconstruction of origami models from given boundaries.

Theorem 4: If an edge e of a unit square is folded by a single fold such that a
point E divides e into two segments e1 and e2 that map to e′1 and e′2 respectively, and
the angle contained by e′1 and e′2 is equal to ε with 0◦ < ε < 180◦, the resulting crease
c lies on one of the lines through E contained in the plane perpendicular to the angle
bisector of e′1 and e′2.

Knowing this, we must now turn our attention to the slightly more di�cult case
of folding the corner.
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Theorem 5: If a corner of a unit square is folded by a single fold such that the
edges e1 and e2 meeting in the corner A are mapped to segments e′1 and e

′
2 respectively,

meeting in A′, the resulting crease c is a generating line of a second-degree cone Γ.
The axis aΓ of Γ is the angle bisector of the angle contained by e′1 and e′2.

Proof: In order to see this, we place the point A′ and the segments e′1 and e′2 in
a coordinate system as shown in Figure 7.

Figure 7: second theorem of reconstruction

The point A′ is placed on the z-axis with coordinates A′(0, 0, a) while e′1 and e′2
are placed in the yz-plane in such a way that e′1 intersects the y-axis in the point
I(0, 1, 0) and e′2 intersects the y-axis in the point II(0,−1, 0). A crease c emanating
from A′ intersects the xy-plane in a point P with coordinates (x, y, 0), and if we
denote the angles that c contains with e′1 and e

′
2 as ∠ce1 = α and ∠ce′2 = β, we have

α + β = 90◦.
Standard calculation yields

cosα =
a2 + y√

x2 + y2 + a2 ·
√
a2 + 1

and cos β =
a2 − y√

x2 + y2 + a2 ·
√
a2 + 1

,

and since cos(α + β) = 0 must hold, we obtain cosα cos β − sinα sin β = 0. Substi-
tuting the values of cosα and cos β in this equation, we obtain an expression that
simpli�es to

a4 + y2 = a2(x2 + y2 + 1) + x2.

Since the xy-plane intersects the cone in a quadratic curve (an ellipse, in fact), the
cone itself is also quadratic, as claimed.

�
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We name this cone the vertex cone in A and e′1 and e
′
2 the focus lines of the vertex

cone. Note that the points in which the focus lines intersect the xy-plane are not
the foci of the ellipse in the xy-plane, but the role of these lines is analogous to the
role of the foci of an ellipse, since the sum of the angles ∠ce1 = α′ and ∠ce′2 = β is
constant.

4 Reconstructing a Model from its Boundary

In this section, we turn our attention to concrete reconstructions of some simple
origami models. As a �rst example, we will now revisit the origami model and
boundary from Figure 1. As we see in Figure 8, the bounding polyline b is a hexagon
with six vertices. As shown, we place the polyline in a system of coordinates in such
a way that the coordinates of the vertices of b are A1(0, 0, 1

2
), A2(0, 1, 1

2
), I(1

3
, 2

3
, 1

3
),

A3(1
2
, 1, 0), A4(1

2
, 0, 0) and II = O(0, 0, 0).

Figure 8: bounding polyline in a system of coordinates

Note that A1II = A4II = A2I = A3I = 1
2
and A1A2 = A3A4 = 1 certainly holds

for these speci�c coordinates. The total length of b is therefore equal to four, as
required.

As a �rst step in reconstructing an origami model from this polyline, we must
identify which four of the six vertices of the polyline are candidates for the corners
of the folding square. In this particular case, it is quite obvious, since we have
A1A2 = A3A4 = 1, and A1, A2, A3 and A4 must therefore be the corners of the
square.

Next, we note that the angles between successive segments of b in A1 and A4 are
right. Since there are no folds in the boundary between A1 and A2 or between A1

and II, the triangle A1A2II cannot contain a crease, and the analogous result also
follows for triangle A4A3II. A possible candidate for a crease of the reconstructed
model emanating from II (under the simplifying assumption that only one crease of
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the model ends in II) is therefore the line in which the planes of these two triangles
intersect, and since A1A2II lies in the yz-plane and A4A3II lies in the xy-plane, this
line of intersection is the y-axis. This is illustrated in Figure 9.

Figure 9: �rst forced crease

We still require creases emanating from A2, A3 and I. Since I is not a corner of
the folding square, a crease emanating from I must lie in the plane perpendicular
to the angle bisector of ∠A2IA3 by Theorem 3. Since IA2 = IA3 = 1

2
, this angle

bisector joins I with the mid-point (1
4
, 1, 1

4
) of A2A3, and the equation of this plane

is therefore x − 4y + z = −2. If the crease emanating from I is to terminate in a
common end-point with the crease emanating from II, this common point III must
be the point in which the y-axis intersects this plane, i.e. the point III(0, 1

2
, 0), as

shown in Figure 10.

Figure 10: possible reconstruction

We can now check to make sure that this internal point III does indeed complete
a legitimate origami model. The angles ∠A1A2III and ∠A4A3III are each equal
to 45◦, and it is easy to calculate that the same is true of ∠IA2III and ∠IA3III.
Triangles IA2III and IA3III are therefore both isosceles right triangles with sides
of length 1

2
. Quadrilaterals A1A2III II and A4A3III II are congruent right angled

trapezoids with sides of length 1,
√

2
2
, 1

2
and 1

2
respectively, and these shapes can
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be unfolded to yield the unit square. We see that we have indeed reconstructed a
possible origami model with the given boundary b.

By Theorem 3, we note that the crease A2III is a generating line of the vertex
cone in A2 with focus lines A2A1 and A2I, as is the crease A3III of the vertex cone
in A3 with focus lines A3A4 and A3I.

As a next example, we consider a four-pointed symmetrical star as a bounding
polyline b. As shown in Figure 11, the polyline is composed of eight line segments
of equal length, and we can assume that this length equals 1

2
, since the perimeter of

the star then equals four, as required. The star has four axes of symmetry, and in
order for vertices to exist, in which the line segments contain angles less than 90◦ as
required, the star cannot be convex.

As shown in the right-hand part of Figure 11, we can place the star into a sys-
tem of coordinates such that the vertices of b are A1(a, 0, 0), I(b, b, 0), A2(0, a, 0),

II(−b, b, 0), A3(−a, 0, 0), III(−b,−b, 0), A4(0,−a, 0) and IV (b,−b, 0) with ai <
√

2
2

(sinceOA1A2 is an isosceles right triangle with a hypotenuse shorter thanA1I+IA2 =
1), b < a

2
(since the star is certainly not convex) and

1

2
= A1I =

√
(a− b)2 + b2 ⇐⇒ a = b+

√
1

4
− b2.

Figure 11: boundary star in the xy plane

It will prove useful to refer to the acute angles in this star as 2ϕ, which means
that the obtuse (external) angles equal 90◦ + 2ϕ.

65

ISSN: 2711-1792 (En línea) • Espacio Matemático Vol. 1 No. 1 (2020), pp. 54�71



A1, A2, A3 and A4 must be the vertices in which the corners of the folding square
will lie, since the angles contained by the line segments in these points are acute,
whereas the angles contained in I, II, III and IV are obtuse.

There are now several ways in which we could choose to proceed. On one hand,
the fact that b is a plane �gure seems to imply that there could be a �at-folding
origami model with this boundary. For the moment, however, we will put this idea
on hold, in favor of another quite elementary observation.

Noting that the star has four axes of symmetry, it seems reasonable to hope
that we can �nd an origami model with this star as a boundary b with four planes
of symmetry, namely the four planes through the axes of symmetry of the star,
perpendicular to the plane of the star. These are the xz and yz coordinate planes
and the planes joining the z-axis with points I and II respectively. By Theorem 3,
we know that a crease ending in I must lie in a plane perpendicular to the angle
bisector of ∠A1IA2 (if there is only a single crease through this point, which we
assume for the sake of simplicity), and because of the vertical plane of symmetry
passing through this point, the crease must also be vertical, i.e. parallel to the z-
axis, or in other words, perpendicular to the plane of the star b. Since the same will
hold true for the creases ending in II, III and IV under the analogous simplifying
assumptions, the creases must lie as suggested in Figure 12.

Figure 12: possible creases perpendicular to the xy plane

As a next step, we can now consider which crease(s) might end in A1 (and there-
fore, by the assumed symmetry, in A2, A3 and A4). If there is only one crease ending
in A1, this must be perpendicular to the plane of b, as this is the case for the two
facets of the model with edges A1I and A1IV . Since such a crease would be perpen-
dicular both to A1I and A1IV , unfolding such a crease would yield collinear points
I, A1 and IV , in contradiction to the fact that A1 must unfold to a corner of the
unit square. There must therefore be more than one crease ending in A1.

Since the model is assumed to be symmetrical with respect to the xz coordinate
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plane, such folds must themselves be symmetrical with respect to the xz plane, and
it seems that a model as shown in Figure 13 should result.

Figure 13: possible solid reconstruction from star boundary

It remains to be shown that such a model is actually foldable from the unit square.
In order to see this, we consider the angles in the vertex A1, as shown in Figure 14.
As in this �gure, we let P denote the upper terminus of the vertical crease ending in
I, Q the orthogonal projection of P on the xz coordinate plane, and R the orthogonal
projection of I on the x-axis. Furthermore, having already named ∠RA1I = ϕ, we
can now also name the angle ∠PA1I = α and the line segment PA1 = p.

Figure 14: front point of the reconstruction

Since A1 unfolds to a corner of the unit square and the model is symmetric with
respect to the xz plane, we must have ∠PA1Q = 45◦ − α. Having established these
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designations, we have

sinϕ =
IR

IA1

=
PQ

IA1

=
p · sin(45◦ − α)

p · cosα
,

and some easy calculation shows that this is equivalent to

tanα = 1−
√

2 · sinϕ.

Since both α and ϕ lie between 0◦ and 45◦, every possible angle ϕ therefore uniquely
determines a corresponding value of α (and vice versa), and a possible origami model
therefore certainly exists, since the model will be completed by a square in a plane
perpendicular to the z-axis, as shown in Figure 13 because of the resulting symmetry.

5 Reconstructing Flat-folding Models

Obviously, any �at origami model has a plane boundary, and we therefore have a
special case given if we are confronted with a boundary b which lies completely in a
plane. In such a case, it seems obvious to consider the possibility of a �at origami
model as a candidate for the solution of the reconstruction problem.

Of course, any �at-foldable crease pattern must obey the criteria of Maekawa's
Theorem and Kawasaki's theorem, i.e. the number of mountain folds and valley
folds in each vertex must di�er by two and the sums of alternating angles in each
vertex must equal 180◦. On the one hand, these are fairly strict constraints for any
reconstruction problem, but on the other hand, this very fact makes them very useful
tools in �nding a concrete solution to such a problem.

As was already mentioned earlier, a four-pointed star with acute angles 2ϕ is an
interesting candidate as the boundary b for this type of reconstruction. If we wish to
keep the number of folds small, it seems reasonable to hope that we can �nd a model
in which only one crease ends in each of the eight vertices of b. If the acute angle is
to equal 2ϕ, and the fold is to be �at, this means that we must fold one edge of the
unit square by an angle of 1

2
· (90◦ − 2ϕ) = 45◦ − ϕ. This is illustrated in Figure 15.

Furthermore, since the obtuse angles must emanate from the points corresponding
to the mid-points of the sides of the unit square, knowing that the obtuse angles must
be equal to 90◦+2ϕ, we must fold one half of the edge of the unit square by an angle
of 1

2
· (180◦ − (90◦ + 2ϕ)) = 45◦ − ϕ as is also illustrated in Figure 15. Since these

two angles are equal, the resulting creases will be parallel.
Because of the rotational symmetry of the unit square, this gives us a total of

eight creases, of which each one emanating from the mid-point of an edge of the unit
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Figure 15: crease pattern for �at model from star boundary

square intersects the adjoining one emanating from the corner. The four resulting
points of intersection must therefore be vertices of the folding pattern, and since
there must be an even number of creases emanating from each such vertex, it seems
obvious to consider the crease pattern completed by the sides of this square. Applying
symmetry and Maekawa's Theorem gives us the crease pattern shown in Figure 15.
(Or else, of course, we can also get the pattern resulting from the exchange of all
mountain folds for valley folds and vice versa.) Noting that the angles of the square
equal 90◦, as do the angles of the small triangles in the corners of the interior square,
we see that the angle constraints of Kawasaki's theorem are also ful�lled, and the
crease pattern will indeed fold �at. The result is shown in Figure 16.

Figure 16: �at reconstruction from star boundary

In the left-hand �gure, we see only the visible parts of the creases and the edge
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of the paper. In the right-hand �gure, the lines not visible here are also added, with
the sections belonging to the border b drawn in thick dashed lines and the invisible
crease parts drawn as thin dotted lines. Also, the relative position of the original
unit square is shown by thin full lines.

This brings us to an interesting point. While we may have expected some kind of
uniqueness when we began looking for solutions to the boundary problem, we have
discovered a counter-example in the four-pointed star. The two models that result
by assuming the existence of a certain type of symmetry on the one hand, and a �at-
folding model on the other, are obviously quite di�erent, but both as simple (in the
sense of being somehow irreducible) as can reasonably be expected. This suggests a
number of interesting topics for further study.

• Is there always a �at-folding model with the border b ful�lling the restrictions
stated there, if b lies completely in a plane? Is there always a non-�at-folding
model of this type, if b lies completely in a plane? (Note that this does not
necessarily follow from the existence of a �at-folding model, since a sink fold
of a �at-folding model is again �at-folding, and sink folds are the only obvious
ways to create additional solutions to the boundary problem from given known
solutions.)

• Is some kind of �uniqueness� of the solution of the boundary problem given in
the case of boundaries that do not lie completely in a plane? How would we
de�ne such a type of �uniqueness�?

6 Conclusion and Topics for Further Study

It is clear that we have only scratched the surface of this topic so far. The issue of
reconstructing origami models from their boundaries promises to be quite fruitful,
and many interesting results seem to lie ahead. Some other questions we could ask
in this context include the following.

• What numerical properties of the �simplest� model with a given boundary can
be derived from the properties of the boundary. In other words, what can we
say about the numbers of vertices, creases and facets of such a model if we
know the properties of the boundary? Do the smallest such values necessarily
correlate with the �simplest� origami model with a certain given boundary?

• What restrictions on the model can be derived from known properties of the
boundary? For instance, can we derive any interesting inferences about the
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radius of the smallest sphere surrounding an origami model from the measure-
ments of the boundary, without �rst actually �nding the model itself?

• Is there some way to systematize the reconstruction of an origami model from
the boundary by applying the theorems of reconstruction in a systematic man-
ner? Could we develop a program to automatically derive an origami model
with a given boundary? It is known that the problem is solvable in polynomial
time, but what would a program look like that actually creates the model?

Finally, recall that it is also of interest to consider how we might solve the problem
of reconstruction from the boundary with methods other than those derived from
classic euclidean ideas. As was already mentioned, a possible numerical approach to
this question is suggested in [2].
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