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RESUMEN

La enfermedad de Alzheimer es la causa mds frecuente de demencia, gene-
ralmente con inicio después de los 65 afios. Sin embargo, hay algunas muta-
ciones genéticas que inducen la aparicién de los sintomas neurocognitivos
antes de esa edad. El estudio de los portadores de la mutacién proporciona
una oportunidad tinica para identificar los cambios preclinicos tempranos
relacionados con la enfermedad. Los Potenciales Relacionados a Eventos
son una herramienta poderosa utilizada para el estudio de sustratos neura-
les de la funcidn cognitiva y el deterioro. El anilisis de conectividad surge
como una alternativa al enfoque tipico de promedio de Potenciales Rela-
cionados a Eventos. En el presente trabajo, dos grupos, portadores de la
mutacién y no portadores realizan una tarea de memoria durante el registro
de Electroencefalografia. Se construyen grafos de la dindmica cerebral utili-
zando la Funcién de Transferencia Dirigida directa, calculada sobre sefiales
promedio de ocho regiones de interés. Nuestros resultados muestran cémo
el estudio dindmico de la conectividad podria ayudar a detectar cambios
neuronales en la fase preclinica de la enfermedad de Alzheimer.

Palabras clave: Enfermedad de Alzheimer familiar, Electroencefalografia,
Conectividad efectiva, Grafos cerebrales dindmicos.
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ABSTRACT

Alzheimer’s disease is the most prevalent cause of dementia generally with
an onset after the 65 years. However, there are some genetic mutations
that induce the onset of the neurocognitive symptoms before that age. The
study of mutation carriers provides a unique opportunity to identify early
preclinical changes related to Alzheimer’s disease. Event Related Potentials
is a powerful tool used for the study of the neural substrates of cognitive
function and deterioration. Connectivity analysis emerges as an alternative
to the average approach typical in Event Related Potentials. In the current
work, two groups of subjects (carriers and non-carriers of an AD mutation)
performed a memory task during Electroencephalography recording. Dy-
namical brain graphs were built using the direct Directed Transfer Function
calculated on the signals averaged of eight regions of interest. Our results
show how the dynamical study of the connectivity could help to detect neu-
ronal changes in preclinical stage of Alzheimer’s disease.

keywords: Familial Alzheimer disease, Electroencephalography, Effective

connectivity, Dynamical brain graphs.

I. INTRODUCTION

lzheimer’s disease (AD) is the most prevalent
cause of dementia, a neurodegenerative condi-
tion, generally with an onset after the 65 years
[1]. Although is impossible to know which indi-
viduals will develop AD, some genetic mutations
induce the occurrence of the disease [2], [3]. In
Colombia exists a large family group with PSEN1
E280A mutation involved in the production of
[-amyloid [4]. This mutation has an autosomal
dominant inheritance with a mean age of 46.8
years at dementia onset [5]. The search of early
biomarkers is an active research field because the
efficacy of some AD therapies may depend of the
initiation of treatment before clinical manifesta-
tion of the disease. In this way, the study of muta-
tion carriers provides an unique opportunity to
identify early changes related to predisposition
to the disease [6], [7].

Electroencephalography (EEG) enables the
research of early neurophysiological changes as-
sociated with the neurodegenerative processes.
EEG has a high temporal resolution and repre-
sents a low cost, portable and non-invasive al-
ternative to study the brain function [8]. The AD
has been defined as a disconnection syndrome,
and consequently network approaches based in
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graph theory could capture different features of
the disease [9]—[13].

Recent studies in PSEN1 E280A mutation ca-
rriers give new evidences about connectivity
changes that might be related to compensatory
mechanisms [14]. In a visual recognition task
were found differences only during the 200-300
ms highlighting the disease as a dynamical phe-
nomenon [15].

In previous work, we found EEG quantitative
changes in this population. During recordings
of encoding in a memory task, theta frequency
bands were lower in carriers compared with
controls [16]. Here, we extend the study of this
population with a graph theory based analysis.
The aim of this work was to study the EEG sig-
nals as a dynamical process using graph theory
in presymptomatic AD PSEN1 E280A mutation
carriers and healthy non-carriers during a me-
mory task.

Our main hypothesis is that connectivity in
healthy non-carries subjects differ from PSEN1
E280A asymptomatic carriers and these diffe-
rences can be used as a clinical marker of the
disease in this population.
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1II. METHODS

A. Subjects

Subjects are members of the PSEN1 E280A
mutation Colombian kindred: Participants with
age between 18-34 vyears without cognitive
impairment (Clinical Diagnostic Rating Scale
(CDR) score of 0 and Folstein Mini-Mental State
Examination (MMSE) score of 28 or higher).
Fifteen Asymptomatic mutation carriers (ACr)
and fifteen healthy non-carriers (Control) were
matched for gender, age, and educational level
(Table I). Informed consent for participation
was obtained from all subjects according to the
protocol approved by the Human Subjects Com-
mittee of the Universidad de Antioquia. All data
were acquired by researchers who were blinded
to the participant’s genetic status. The exclusion
criteria were severe physical illness, alcohol/
drugs abuse, regular use of neuroleptics and an-
tidepressants with anticholinergic action.

Table I. Demographic and neuropsychological
characteristics of participants
(ACr: asymptomatic mutation carriers; MMSE:
mini-mental scale examination; SD:
standard deviation; df: degrees of freedom).

ACr Control T-Test
N 15 15
27.8 315 T=-196
A ' : =14
gelyears) 4 0sp) (#585D) 9
P=0.07
Gender (E/M) 9/6 9/6
Educati 12.1 112 (3.4 L7082
+
( el;i:)tlon (+é 3SD) sb) W
¥ = P=0.43
297 29.5 (+0.9 T=0.68
E : 2T i 14
MMS (£0.6SD) SD) d
P=0.51
B. EEG recordings

A Neuroscan unit amplifier (Neuroscan Medical
System, Neurosoft Inc. Sterling, VA, USA) was
used to record EEGs. EEG data were recorded
(0.1-200 Hz bandpass) from 64 electrodes po-
sitioned according to the international 10-10
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system with midline reference (recomputed to
common average). A simultaneous electrooculo-
gram (0.1+100 Hz bandpass) was also recorded.

Data were registered during an Event Related
Potentials (ERP) experiment where participants
performed a memory encoding task using color
pictures of concrete and nameable objects. 50
stimuli were presented. Each trial began with
a 1000 ms fixation character (“+”) prior to the
presentation of the stimuli. Then, stimuli were
presented for 2000 ms followed by the question,
“Do you like this item?” Subjects were then
prompted to button press to signify their like/
dislike judgment.

C. Signal pre-processing

Clean EEG was obtained from the implementa-
tion of automated preprocessing pipeline using
MATLAB toolbox EEGLAB [17]. Data were
filtered (1-50 Hz; FIR filter), bad channels were
detected and interpolated using spherical spli-
nes. Then, data was segmented in epochs of 1.25
s and re-referenced to average. The EEG epochs
with ocular, muscular, and other types of artifact
were removed by a computerized automatic pro-
cedure based on linear trend, joint probability
and kurtosis approach [18]. Independent com-
ponent analysis enhanced by wavelet was used to
correct eye blinks artifacts [19]. The last method

Figura 1. Electrode distribution according to 10-
10 system and ROI selection.
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applies a wavelet thresholding to the demixed
independent components as an intermediate
step, which enables recovering the neural acti-
vity present in artefactual components. In this
case, we use a threshold of 0.1 that represents the
probability that the component was neuronal.
This probability was calculated by the Multiple
Artifact Rejection Algorithm [20].

The corrected data was resampled to 200 Hz and
used to calculate 8 regions of interest (ROI’s) as
the mean of the time series of the channels in
each ROI (FigURA 1).

D. Direct Directed Transfer Function
and Graph construction

In the current work the direct Directed Trans-
fer Function (dDTF) was used as measure of
connectivity. The dDTF may be considered as
an extension of the Granger causality principle
(effective connectivity) for an arbitrary number
of channels [21]. The dDTF could be extended
to study the connectivity in a dynamic way, even
in cognitive tasks [22]. This kind of approach
offers an insight into information processing in
the brain, and may elucidate the origins of brain
pathology.

For each subject a sliding-window Adaptive
Multivariate Autoregressive (AMVAR) model
was fitted to the data and the dDTF was estima-
ted using the Source Information Flow Toolbox
(SIFT) [21]. SIFT applies a wide range of methods
for assessing effective connectivity between EEG
signals. The length of the sliding-window was
250 ms. The parameters used to fit the model are
shown in the Table II.

In each sliding-window the dDTF is calculated
as follows:

d2(f) = nZ (DK () 1)

z
2 — |5:; ()
) = e B 2)

ki;(f) = 1 . (3)
S50
5, =s(H" (4)
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Where fis the frequency, #°; (f) is the full fre-
quency DTF (2), is the partial coherence (3), H,
is the system transfer matrix obtained after the

z-transform of the AMVAR model, and S(f) is
the spectral density matrix.
Table I AMVAR model parameters

(mean + standard deviation).

Parameter Value
Model Order 9.27 + 0.94
Window step 001s

Window length 0255
Consistency (75.89 + 0.57) %
Stability 100 %

The dDTF was analyzed in six frequency bands
(delta: 1-4 Hz, theta: 4-8 Hz, alphal: 8-10 Hz,
alpha2: 10-13 Hz, beta: 13-30 Hz, and gamma:
30-50 Hz) for 126 intervals of 10 ms each one.
The first interval started at the time of stimulus
presentation. At each interval an 8x8 matrix was
obtained where each entry (i,j) correspond to the
connectivity between the ROI-i and the ROI-j.
To simplify the statistical analysis, the measures
were reduced to twelve intervals of 100 ms as the
average of 10 intervals of 10 ms.

The new matrices were converted to ensemble
graphs, that avoids the definition of a threshold
for the comparison between groups [23]. Three
graphs measures were obtained: node strength,
node clustering coefficient, and network cha-
racteristic path length [24]. Node strength is the
sum of weights of links connected to the node

(5).
,Ic:"" = E_;I'EN Wz'_;l' + E}'EN 1"‘;}2 (5)

Where K, is the node strength, N is the set of all
nodes in the network and w, are the connection
weights between node i and j.

The clustering coefficient is a measure of functio-
nal segregation which quantifies the fraction of
intensities triangles around an individual node
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and is equivalent to the fraction of the node’s
intensities neighbors that are also neighbors of
each other [25] and is calculated as in (6):

k" = Zjenwi; + Zjen ""‘:1':“ (®)

Where K*, and K, are the out-degree and in-
degree, respectively.

The characteristic path length is the average of
shortest path length between all pairs of nodes
in the network and is the most commonly used
measure of functional integration [26]. It is cal-
culated as in (7):

I Kenjeidi]

L= ﬁz N-1 @)
ieN

Where K is the shortest weighted path length

between i and j.

E. Statistical analysis

The main working hypothesis of this study was
that the connectivity across time could differ in
preclinical Alzheimer’s disease compared with
control subjects. To test this hypothesis an analy-
sis of repeated measures using the two sample
Hotelling’s T-square test was conducted. This
analysis was conducted for each frequency band
and ROI separately. Additionally, a Two-sample
Kolmogorov-Smirnov test was performed over
the mean intervals of each measure to compare

dynamical versus stationary functional connecti-
vity. Statistical significance used for all tests was
a = 0.05. P values were corrected for multiple
comparisons for each node using the Bonferroni
correction method [27].

III. RESULTS

There were not differences in demographic
information (age, gender and education) or neu-
ropsychological examination (MMSE) (Table I)
as expected given the asymptomatic condition of
the population.

In static connectivity, differences were not found.
For dynamical connectivity, significant differen-
ces are shown in Table III. We observed diffe-
rences in alphal band for all measures: in node
strength for ROI 2 and ROI 8, and clustering
coefficient for ROI 8. Figura 2 and 3 illustrate the
change of the graph measures for ROI 8 and ROI
2, respectively. ROI 8 has higher connectivity
strength and a higher lustering coefficient after
the 200 ms in ACr patients compared with Con-
trol subjects. Unlike to the ROI 8, in ROI 2 ACr
has less connectivity strength than the Control
group. In order to compare the graph analysis
with the traditional ERP method, we evaluated
the mean amplitude in time series for ROI 8 and
ROI 2 and no statistical differences were found
(p > 0.05). ACr shows a significant lower charac-
teristic path length after 200 ms compared with
Control group as shown in Figura 4.

Table I11. Hotelling's T-square test results for ACr patients and Control subjects.
(ROL: region of interest; T2: Hotelling T-Squared test).

Measure Band ROI 12 P-value
2 41.6975 0.0001
Delta
6 36.8252 0.0002
Node strength
2 108.0493 0.0009
Alphal
8 28.1575 0.0052
Alphal 8 32.6850 0.0011
Node clustering coefficient
Alpha2 8 29.0623 0.0039
Alphal 30.2615 0.0026
Characteristic path length Alpha2 27.3268 0.0069
Beta 21.5646 0.0427
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IV. DISCUSSION

The previous results suggest a different beha-
vior in connectivity measures for ACr relative
to Control group during the encoding process,
mainly in right parietal region (ROI 8) for alpha
1 band.

Studies with the mutation PSEN1 E280A have
shown an alteration in brain function in pres-
ymptomatic disease cases. By estimating intra-
cranial sources of evoked potentials (ERPs) in
semantic processing, lower N400 amplitudes
were found in carriers compared with presymp-
tomatic carriers and noncarriers [28]. In another
study, using high density ERPs to examine dy-
namic brain function in young presymptomatic
carriers, found that despite an identical behavio-
ral performance, the carriers showed lower posi-
tivity in frontal regions and increased positivity
in occipital regions compared with control sub-
jects. These measurements showed high sensi-
tivity and specificity for predicting the presence
of AD [15]. Our results show that the analysis of
dynamic connectivity can also detect changes in
the preclinical stage opening the possibility to
new hypotheses in biomarkers research.

A. Mean amplitude ERPs
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C. Mean clustering coefficient
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Figura 2. Mean ERPs (A), strength (B), and clus-
tering coefficient (C) values in ROI 8 in alphal
band for ACr and Control groups.
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Figura 3. Mean ERPs (A) and strength (B) in
alphal band for ACr and Control groups in ROI
2.

Mean characteristic path length
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Figura 4. Mean characteristic path length in
alphal band for ACr and Control groups.

Quantitative analysis of EEG (qEEG) also have
showed changes in preclinical stages of the disea-
se. The power characteristics on fast frequency
bands (alpha and beta) enables an accurate dis-
crimination between healthy and asymptomatic
carriers groups and between patients with pro-
bable AD and asymptomatic carriers [16], [29].

Previous studies also shown an increase connec-
tivity in mutation carriers in the theta and alphal
bands [30], but only at global level. The proposed
analysis allowed the detection of more specific
differences by region also in the alpha band.

Graph analysis in AD has shown a loss of brain
functional network topology, leading the net-
work towards a more random topology, given by
a reduction in clustering coefficient values and
characteristic path length [31]—[33]. Our results
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may suggest a network topology more complex
in ACr group due higher clustering coefficient
and lower characteristic path length values.
This change in complexity, although could be a
compensatory mechanism, might be related to a
higher metabolic cost [34]. A study on cognitive
effort during a working memory task found that
greater effort cause emergence of a more globally
efficient but less economical network configura-
tion in fast frequency bands [35]. A similar phe-
nomenon could be happening in ACr subjects.

In our work, we found that the analysis of dyna-
mic connectivity measures in alpha band allows
differentiation between these groups, but further
studies are required to evaluate the discrimina-
ting power of these measures.

V. CONCLUSION

In this paper brain dynamics under a task of
visual encoding in pre-symptomatic Alzheimer’s
disease was studied. The results show that the
temporal analysis of functional connectivity, un-
like the stationary analysis, is more sensible di-
fferentiating between carriers and non-carriers.
Actually, it is only possible to establish that there
are different behaviors of the measures for both
groups. Future studies are needed to know in
which time intervals the differences are higher.

Our results show how the dynamical study of
the connectivity might help to detect neuronal
changes in preclinical stage of Alzheimer’s disea-
se, something that open the possibility to use the
measures as clinical markers in this population.
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