Implementación de las nanopartículas en aplicaciones de diagnostico
Palabras clave:
nanodiagnóstico, nanopartícula, nanodispositivos, nanosistemasResumen
El nanodiagnóstico permite la identificación de enfermedades en sus estudios iniciales a nivel celular o molecular, e idealmente al nivel de una sola célula, mediante la utilización de nanodispositivos y sistemas de contraste. Esta herramienta proporciona un valioso aporte a la medicina, ya que permite un diagnóstico más rápido y exacto brindando la posibilidad de dar un tratamiento oportuno y adecuado.
La nanotecnología permite obtener una comprensión fundamental de fenómenos biológicos a escala nanométrica. Con la implementación de esta nueva tecnología es posible crear y manipular dispositivos y sistemas con nuevas propiedades y funciones, originados por su tamaño nanométrico. Esta rama ha influenciado el área de la salud, cuyo principal objetivo es desarrollar herramientas que permitan diagnosticar, prevenir y tratar enfermedades. Patologías que pueden ser detectadas en su etapa inicial y así poder actuar de forma oportuna.
Descargas
Citas
Akers, W. J., Zhang, Z., Berezin, M., Ye, Y., Agee, A., Guo, K., Fuhrhop, R. W., Wickline, S. A., Lanza, G. M., & Achilefu, S. (2010). Targeting of α νβ 3-integrins expressed on tumor tissue and neovasculature using fluorescent small molecules and nanoparticles. Nanomedicine, 5(5), 715–726. https://doi.org/10.2217/nnm.10.38
Albrecht, C., Borm, P. J. A., & Unfried, K. (2004). Signal transduction pathways relevant for neoplastic effects of fibrous and non-fibrous particles. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 553(1–2), 23–35. https://doi.org/10.1016/j.mrfmmm.2004.06.015
Alharbi, K. K., & Al-sheikh, Y. A. (2014). Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi Journal of Biological Sciences, 21(2), 109–117. https://doi.org/10.1016/j.sjbs.2013.11.001
Bañobre-López, M., Teijeiro, A., & Rivas, J. (2013). Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology and Radiotherapy, 18(6), 397–400. https://doi.org/10.1016/j.rpor.2013.09.011
Bárcena, C., Sra, A. K., & Gao, J. (2009). Applications of magnetic nanoparticles in biomedicine. Nanoscale Magnetic Materials and Applications, 167, 591–626. https://doi.org/10.1007/978-0-387-85600-1_20
Burtea, C., Laurent, S., Mahieu, I., Larbanoix, L., Roch, A., Port, M., Rousseaux, O., Ballet, S., Murariu, O., Toubeau, G., Corot, C., Vander Elst, L., & Muller, R. N. (2011). In vitro biomedical applications of functionalized iron oxide nanoparticles, including those not related to magnetic properties. Contrast Media and Molecular Imaging, 6(4), 236–250. https://doi.org/10.1002/cmmi.423
Calero, M. C. (2015). Caracterización De Nanopartículas Magnéticas En Cultivos Celulares Para Sus Aplicaciones Biomédicas Cellular Studies of Magnetic Nanoparticles for Biomedical Applications Tesis Doctoral.
Calero, M., Gutiérrez, L., Salas, G., Luengo, Y., Lázaro, A., Acedo, P., Morales, M. P., Miranda, R., & Villanueva, A. (2014). Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 10(4), 733–743. https://doi.org/10.1016/j.nano.2013.11.010
Chamé, K. F. (2013). Síntesis y Caracterización de Nanopartículas Magnéticas. Tesis de Maestría, 87.
Conde, J., Dias, J. T., Grazú, V., Moros, M., Baptista, P. V., & de la Fuente, J. M. (2014). Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Frontiers in Chemistry, 2(JUL), 1–27. https://doi.org/10.3389/fchem.2014.00048
Echevarría-Castillo, F. (2013). Retos de este siglo: Nanotecnología y salud. Revista Cubana de Hematologia, Inmunologia y Hemoterapia, 29(1), 3–15.
Egilea /, Landín, J., Zuzendaria, B., García, I., & Montoya, A. (2016). Nanopartículas como agentes teranósticos.
Estelrich, J., Escribano, E., Queralt, J., & Busquets, M. A. (2015). Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. International Journal of Molecular Sciences, 16(4), 8070–8101. https://doi.org/10.3390/ijms16048070
García, J. S. (2012). Nanopartículas magnéticas para aplicaciones biomédicas. 125. http://hdl.handle.net/2445/41856
Gojova, A., Guo, B., Kota, R. S., Rutledge, J. C., Kennedy, I. M., & Barakat, A. I. (2007). Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: Effect of particle composition. Environmental Health Perspectives, 115(3), 403–409. https://doi.org/10.1289/ehp.8497
Grüttner, C., Müller, K., Teller, J., & Westphal, F. (2013). Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. International Journal of Hyperthermia, 29(8), 777–789. https://doi.org/10.3109/02656736.2013.835876
I, Yu, C., Chen, R., Li, J. J., Li, J. J., Drahansky, M., Paridah, M. ., Moradbak, A., Mohamed, A. ., Owolabi, FolaLi, H. abdulwahab taiwo, Asniza, M., Abdul Khalid, S. H. ., Sharma, T., Dohare, N., Kumari, M., Singh, U. K., Khan, A. B., Borse, M. S., Patel, R., … Reading, F. (2012). We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech, i(tourism), 13. https://doi.org/10.1016/j.colsurfa.2011.12.014
Jeng, H. A., & Swanson, J. (2006). Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 41(12), 2699–2711. https://doi.org/10.1080/10934520600966177
Kwon, J. T., Hwang, S. K., Jin, H., Kim, D. S., Minai-Tehrani, A., Yoon, H. J., Choi, M., Yoon, T. J., Han, D. Y., Kang, Y. W., Yoon, B. Il, Lee, J. K., & Cho, M. H. (2008). Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. Journal of Occupational Health, 50(1), 1–6. https://doi.org/10.1539/joh.50.1
Lee, D. E., Koo, H., Sun, I. C., Ryu, J. H., Kim, K., & Kwon, I. C. (2012). Multifunctional nanoparticles for multimodal imaging and theragnosis. Chemical Society Reviews, 41(7), 2656–2672. https://doi.org/10.1039/c2cs15261d
Li, L., Jiang, W., Luo, K., Song, H., Lan, F., Wu, Y., & Gu, Z. (2013). Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics, 3(8), 595–615. https://doi.org/10.7150/thno.5366
Li, Y., Chen, Z. W., & Gu, N. (2012). In vitro biological effects of magnetic nanoparticles. Chinese Science Bulletin, 57(31), 3972–3978. https://doi.org/10.1007/s11434-012-5295-8
Majetich, S. A. (2006). Magnetic Nanoparticles and Their Applications. Nanostructured Materials: Processing, Properties, and Applications: Second Edition, 1, 439–485. https://doi.org/10.1016/B978-081551534-0.50012-9
Mandal, S. (2016). Engineered magnetic core shell nanoprobes: Synthesis and applications to cancer imaging and therapeutics. World Journal of Biological Chemistry, 7(1), 158. https://doi.org/10.4331/wjbc.v7.i1.158
Motellón, J. L., & Bueren Roncero, J. (2010). 9a. edición del curso de biotecnología aplicada a la salud humana programa preliminar : 3 al 5 de noviembre de 2010, CIEMAT, Madrid. http://digital.csic.es/handle/10261/44635
Nanbiolog Í a Y. (n.d.).
Naqvi, S., Samim, M., Abdin, M. Z., Ahmed, F. J., Maitra, A. N., Prashant, C. K., & Dinda, A. K. (2010). Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. International Journal of Nanomedicine, 5(1), 983–989. https://doi.org/10.2147/IJN.S13244
Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627. https://doi.org/10.1126/science.1114397
Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., & Yang, H. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle and Fibre Toxicology, 2, 1–35. https://doi.org/10.1186/1743-8977-2-8
Oberdörster, G., Stone, V., & Donaldson, K. (2007). Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 1(1), 2–25. https://doi.org/10.1080/17435390701314761
Panariti, A., Miserocchi, G., & Rivolta, I. (2012). The effect of nanoparticle uptake on cellular behavior: Disrupting or enabling functions? Nanotechnology, Science and Applications, 5(1), 87–100. https://doi.org/10.2147/NSA.S25515
Rovaris, M., Miller, D. H., Petry, K. G., & Brochet, B. (2012). assessment of Disease activity in Multiple sclerosis Phenotypes with combined gadolinium- and. 264(1), 225–233. https://doi.org/10.1148/radiol.12111416/-/DC1
Ruiz, A., Salas, G., Calero, M., Hernández, Y., Villanueva, A., Herranz, F., Veintemillas-Verdaguer, S., Martínez, E., Barber, D. F., & Morales, M. P. (2013). Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents. Acta Biomaterialia, 9(5), 6421–6430. https://doi.org/10.1016/j.actbio.2012.12.032
Thakor, A. S., & Gambhir, S. S. (2013). Nanooncology: The future of cancer diagnosis and therapy. CA: A Cancer Journal for Clinicians, 63(6), 395–418. https://doi.org/10.3322/caac.21199
Villanueva, A., Cãete, M., Roca, A. G., Calero, M., Veintemillas-Verdaguer, S., Serna, C. J., Del Puerto Morales, M., & Miranda, R. (2009). The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology, 20(11). https://doi.org/10.1088/0957-4484/20/11/115103
Descargas
Publicado
-
Resumen460
-
PDF448
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Yehidi Julieth Medina Castillo , Daniel Llamosa Pérez , Mónica Losada Barragán
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.