Implementation of nanoparticles in diagnostic applications

Authors

Keywords:

nanodiagnóstico, nanopartícula, nanodispositivos, nanosistemas

Abstract

Nanodiagnosis allows the identification of diseases in their initial studies at the cellular or molecular level, and ideally at the level of a single cell, through the use of nanodevices and contrast systems. This tool provides a valuable contribution to medicine, since it allows a faster and more accurate diagnosis, offering the possibility of giving a timely and adequate treatment.

Nanotechnology provides a fundamental understanding of biological phenomena at the nano-scale. With the implementation of this new technology it is possible to create and manipulate devices and systems with new properties and functions, originated by their nanometric size. This branch has influenced the area of health, whose main objective is to develop tools to diagnose, prevent and treat diseases. Pathologies that can be detected in their initial stage and thus be able to act in a timely manner.

Downloads

Download data is not yet available.

References

Akers, W. J., Zhang, Z., Berezin, M., Ye, Y., Agee, A., Guo, K., Fuhrhop, R. W., Wickline, S. A., Lanza, G. M., & Achilefu, S. (2010). Targeting of α νβ 3-integrins expressed on tumor tissue and neovasculature using fluorescent small molecules and nanoparticles. Nanomedicine, 5(5), 715–726. https://doi.org/10.2217/nnm.10.38

Albrecht, C., Borm, P. J. A., & Unfried, K. (2004). Signal transduction pathways relevant for neoplastic effects of fibrous and non-fibrous particles. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 553(1–2), 23–35. https://doi.org/10.1016/j.mrfmmm.2004.06.015

Alharbi, K. K., & Al-sheikh, Y. A. (2014). Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi Journal of Biological Sciences, 21(2), 109–117. https://doi.org/10.1016/j.sjbs.2013.11.001

Bañobre-López, M., Teijeiro, A., & Rivas, J. (2013). Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology and Radiotherapy, 18(6), 397–400. https://doi.org/10.1016/j.rpor.2013.09.011

Bárcena, C., Sra, A. K., & Gao, J. (2009). Applications of magnetic nanoparticles in biomedicine. Nanoscale Magnetic Materials and Applications, 167, 591–626. https://doi.org/10.1007/978-0-387-85600-1_20

Burtea, C., Laurent, S., Mahieu, I., Larbanoix, L., Roch, A., Port, M., Rousseaux, O., Ballet, S., Murariu, O., Toubeau, G., Corot, C., Vander Elst, L., & Muller, R. N. (2011). In vitro biomedical applications of functionalized iron oxide nanoparticles, including those not related to magnetic properties. Contrast Media and Molecular Imaging, 6(4), 236–250. https://doi.org/10.1002/cmmi.423

Calero, M. C. (2015). Caracterización De Nanopartículas Magnéticas En Cultivos Celulares Para Sus Aplicaciones Biomédicas Cellular Studies of Magnetic Nanoparticles for Biomedical Applications Tesis Doctoral.

Calero, M., Gutiérrez, L., Salas, G., Luengo, Y., Lázaro, A., Acedo, P., Morales, M. P., Miranda, R., & Villanueva, A. (2014). Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 10(4), 733–743. https://doi.org/10.1016/j.nano.2013.11.010

Chamé, K. F. (2013). Síntesis y Caracterización de Nanopartículas Magnéticas. Tesis de Maestría, 87.

Conde, J., Dias, J. T., Grazú, V., Moros, M., Baptista, P. V., & de la Fuente, J. M. (2014). Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Frontiers in Chemistry, 2(JUL), 1–27. https://doi.org/10.3389/fchem.2014.00048

Echevarría-Castillo, F. (2013). Retos de este siglo: Nanotecnología y salud. Revista Cubana de Hematologia, Inmunologia y Hemoterapia, 29(1), 3–15.

Egilea /, Landín, J., Zuzendaria, B., García, I., & Montoya, A. (2016). Nanopartículas como agentes teranósticos.

Estelrich, J., Escribano, E., Queralt, J., & Busquets, M. A. (2015). Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. International Journal of Molecular Sciences, 16(4), 8070–8101. https://doi.org/10.3390/ijms16048070

García, J. S. (2012). Nanopartículas magnéticas para aplicaciones biomédicas. 125. http://hdl.handle.net/2445/41856

Gojova, A., Guo, B., Kota, R. S., Rutledge, J. C., Kennedy, I. M., & Barakat, A. I. (2007). Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: Effect of particle composition. Environmental Health Perspectives, 115(3), 403–409. https://doi.org/10.1289/ehp.8497

Grüttner, C., Müller, K., Teller, J., & Westphal, F. (2013). Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. International Journal of Hyperthermia, 29(8), 777–789. https://doi.org/10.3109/02656736.2013.835876

I, Yu, C., Chen, R., Li, J. J., Li, J. J., Drahansky, M., Paridah, M. ., Moradbak, A., Mohamed, A. ., Owolabi, FolaLi, H. abdulwahab taiwo, Asniza, M., Abdul Khalid, S. H. ., Sharma, T., Dohare, N., Kumari, M., Singh, U. K., Khan, A. B., Borse, M. S., Patel, R., … Reading, F. (2012). We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech, i(tourism), 13. https://doi.org/10.1016/j.colsurfa.2011.12.014

Jeng, H. A., & Swanson, J. (2006). Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 41(12), 2699–2711. https://doi.org/10.1080/10934520600966177

Kwon, J. T., Hwang, S. K., Jin, H., Kim, D. S., Minai-Tehrani, A., Yoon, H. J., Choi, M., Yoon, T. J., Han, D. Y., Kang, Y. W., Yoon, B. Il, Lee, J. K., & Cho, M. H. (2008). Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. Journal of Occupational Health, 50(1), 1–6. https://doi.org/10.1539/joh.50.1

Lee, D. E., Koo, H., Sun, I. C., Ryu, J. H., Kim, K., & Kwon, I. C. (2012). Multifunctional nanoparticles for multimodal imaging and theragnosis. Chemical Society Reviews, 41(7), 2656–2672. https://doi.org/10.1039/c2cs15261d

Li, L., Jiang, W., Luo, K., Song, H., Lan, F., Wu, Y., & Gu, Z. (2013). Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics, 3(8), 595–615. https://doi.org/10.7150/thno.5366

Li, Y., Chen, Z. W., & Gu, N. (2012). In vitro biological effects of magnetic nanoparticles. Chinese Science Bulletin, 57(31), 3972–3978. https://doi.org/10.1007/s11434-012-5295-8

Majetich, S. A. (2006). Magnetic Nanoparticles and Their Applications. Nanostructured Materials: Processing, Properties, and Applications: Second Edition, 1, 439–485. https://doi.org/10.1016/B978-081551534-0.50012-9

Mandal, S. (2016). Engineered magnetic core shell nanoprobes: Synthesis and applications to cancer imaging and therapeutics. World Journal of Biological Chemistry, 7(1), 158. https://doi.org/10.4331/wjbc.v7.i1.158

Motellón, J. L., & Bueren Roncero, J. (2010). 9a. edición del curso de biotecnología aplicada a la salud humana programa preliminar : 3 al 5 de noviembre de 2010, CIEMAT, Madrid. http://digital.csic.es/handle/10261/44635

Nanbiolog Í a Y. (n.d.).

Naqvi, S., Samim, M., Abdin, M. Z., Ahmed, F. J., Maitra, A. N., Prashant, C. K., & Dinda, A. K. (2010). Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. International Journal of Nanomedicine, 5(1), 983–989. https://doi.org/10.2147/IJN.S13244

Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627. https://doi.org/10.1126/science.1114397

Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., & Yang, H. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle and Fibre Toxicology, 2, 1–35. https://doi.org/10.1186/1743-8977-2-8

Oberdörster, G., Stone, V., & Donaldson, K. (2007). Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 1(1), 2–25. https://doi.org/10.1080/17435390701314761

Panariti, A., Miserocchi, G., & Rivolta, I. (2012). The effect of nanoparticle uptake on cellular behavior: Disrupting or enabling functions? Nanotechnology, Science and Applications, 5(1), 87–100. https://doi.org/10.2147/NSA.S25515

Rovaris, M., Miller, D. H., Petry, K. G., & Brochet, B. (2012). assessment of Disease activity in Multiple sclerosis Phenotypes with combined gadolinium- and. 264(1), 225–233. https://doi.org/10.1148/radiol.12111416/-/DC1

Ruiz, A., Salas, G., Calero, M., Hernández, Y., Villanueva, A., Herranz, F., Veintemillas-Verdaguer, S., Martínez, E., Barber, D. F., & Morales, M. P. (2013). Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents. Acta Biomaterialia, 9(5), 6421–6430. https://doi.org/10.1016/j.actbio.2012.12.032

Thakor, A. S., & Gambhir, S. S. (2013). Nanooncology: The future of cancer diagnosis and therapy. CA: A Cancer Journal for Clinicians, 63(6), 395–418. https://doi.org/10.3322/caac.21199

Villanueva, A., Cãete, M., Roca, A. G., Calero, M., Veintemillas-Verdaguer, S., Serna, C. J., Del Puerto Morales, M., & Miranda, R. (2009). The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology, 20(11). https://doi.org/10.1088/0957-4484/20/11/115103

Published

2021-09-29
Metrics
Views/Downloads
  • Abstract
    449
  • PDF (Español)
    436

How to Cite

Medina Castillo , Y. . J., Llamosa Pérez , D. ., & Losada Barragán , M. . (2021). Implementation of nanoparticles in diagnostic applications . REVISTA SAYWA, 2(3). Retrieved from https://revistas.uan.edu.co/index.php/saywa/article/view/804

Issue

Section

Ciencia Aplicada

Metrics

Most read articles by the same author(s)