Métodos Computacionales para el Reconocimiento de Patrones Mioeléctricos en el Control de Exoesqueletos Robóticos: una Revisión

Authors

  • Alberto López Delis Universidad de Oriente, Cuba
  • Andrés F. Ruiz Olaya Universidad Antonio Nariño

Keywords:

surface electromyography, myoelectric control, features extraction, pattern recognition

Abstract

El desarrollo de las interfaces hombre-máquina ha representado una línea de investigación interesante y ampliamente estudiada en el cam po de la rehabilitación. En este sentido, para potencializar los procesos de rehabilitación física de las personas con discapacidad motora hay un esfuerzo creciente en la comunidad científica hacia el desarrollo de nuevos dispositivos robóticos, como los exoesqueletos. El control mioeléctrico es una técnica avanzada concerniente con la detección, procesamiento, clasificación y aplicación de señales electromiográficas para el control de sistemas externos y dispositivos de rehabilitación. En la terapia física efectuada mediante el uso de sistemas robóticos, es fundamental una identificación efectiva de la intención de los movimientos humanos para comandar tales sistemas. En la literatura se han utilizado ampliamente las señales electromiográficas de superficie, teniendo en cuenta que las mismas pueden reflejar la intención del movimiento. Este artículo proporciona una revisión de las técnicas y métodos computacionales que han sido utilizados, basados en técnicas de extracción de características y reconocimiento de patrones para el control mioléctrico de exoesqueletos. Se abordan trabajos que hacen uso de estos métodos, para el control de los dispositivos robóticos, y se plantean direcciones futuras en este campo de investigación.

Downloads

Download data is not yet available.

References

H.S. Lo, S.Q. Xie, “Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospect”, Medical Engineering & Physics, 2012, Vol. 34, No. 3, p.p. 261-268.

C J. De Luca, Electromyography. Encyclopedia of Medical Devices and Instrumentation: Editorial John Wiley, 2006.

M. A. Oskoei y H. Hu, “Myoelectric control systems — A survey”, Biomedical Signal Processing and Control, vol. 2, pp. 275-294, 2007.

J.L. Pons, Wearable Robots, Biomechatronic Exoskeletons: Editorial John Wiley, 2008.

K. Englehart, B. Hudgins y P. Parker, Intelligent Systems and Technologies in Rehabilitation Engineering: Editorial CRC Press, 2001.

M. Zecca, S. Micera, M.C. Carroza, y P. Dario, “Control of multifunctional prosthetic hands

by processing the electromyoagraphic signal”, Critical Reviews in Biomedical Engineering, vol. 30(4-6), pp. 459-485, 2002.

P. Angkoon, P. Pornchai y L. Chusak, “Feature reduction and selection for EMG signal classification”, Expert Systems with Applications, vol. 39, pp. 7420-7431, 2012.

R. Merletti, A. Botter, A. Troiano, E. Merlo y M. A. Minetto, “Technology and instrumentation for detection and conditioning of the surface electromyographic: State of the art”, Clinical Biomechanics, vol. 24, pp. 122-134, 2009.

K. Englehart y B. Hudgings, “A robust, real time control scheme for multifunction myoelectric control”, IEEE Trans. Biomedical Eng., vol. 50(7), pp. 848-854, 2003.

K. Englehart, B.Hudgins y P. A. Parker, “A wavelet-based continuous classification scheme for multifunction control”, IEEE Trans. Biomedical Eng., vol. 48(3), pp. 302-310, 2001.

R. Merletti y P. Parker, Electromyography Physiology, Engineering and Noninvasive Applications”: Editorial IEEE Press Engineering in Medicine and Biology Society, 2004.

M. Zardoshti-Kermani, B.C. Wheeler, K. Badie y R.M. Hashemi, “EMG feature evaluation for movement control of upper extremity prostheses”, IEEE Transactions on Rehabilitation Engineering, vol. 3(4), pp. 324-333, 1995.

M. Lei, Z. Wang y Z. Feng, “Detecting nonlinearity of action surface EMG signal”, Physics Letters A, 2001, vol. 290(5-6), pp. 297-303.

H.P. Huang y C.Y. Chen, “Development of a myoelectric discrimination system for a multi-degree prosthetic hand”, en Proc. of IEEE International Conference on Robotics and Automation vol. 3, pp. 2392–2397, 1999.

R. Merletti, “Standards for reporting EMG data”, Journal of Electromyography and Kinesiology, vol. 6(1), III-IV, 1996.

B. Hudgins, P. Parker y R. Scott, “A new strategy for multifunction myoelectric control”, IEEE Transactions on Biomedical Engineering, vol. 40(1), pp. 82–94, 1993.

M. A. Oskoei y H. Hu, “Support vector machine based classification scheme for myoelectric control applied to upper limb”, IEEE Transactions on Biomedical Engineering, vol. 55(8), pp. 1956–1965, 2008.

R. Boostani y H. Moradi, “Evaluation of the forearm EMG signal features for the control of a prosthetic hand”, Physiological Measurement, vol. 24(2), pp. 309–319, 2003.

A. Fougner, Proportional myoelectric control of a multifunction upper limb prosthesis: Tesis de Maestría, Norwegian University of Science and Technology, Trondheim, Norway, 2007.

S. Karlsson, J. Yu y M. Akay,”Enhancement of spectral analysis of myoelectric signals during static contractions using wavelet methods”, IEEE Trans. Biomed. Eng., vol. 46(6), pp. 670–684, 1999.

S. V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction: Editorial Wiley, 2000.

E. C. Ifeachor y B. W. Jervis, Digital Signal Processing: A Practical Approach: Editorial Addison-Wesley, 1993.

S. Ferguson y G. R. Dunlop, “Grasp Recognition from Myoelectric Signals“, Proc. Australian Conference on Robotics and Automation, pp. 83-87, 2002.

A. Phinyomark, Ch. Limsakul Ch. y P. Phukpattaranont, “A Comparative Study of Wavelet Denoising for Multifunction Myoelectric Control”, Proc. International Conference on Computer and Automation Engineering, pp. 21-25, 2009.

V. Vapnik, The Nature of Statistical Learning Theory: Editorial Springer, 1995.

T. Takagi y M. Sugeno, “Fuzzy Identification of Systems and its Applications to Modeling and Control”, IEEE Trans. Systems, Man and Cibernetics, vol15, pp. 116-132, 1985.

R.A.R.C. Gopuray K. Kiguchi, “Electromyography (EMG)-signal based fuzzy-neuro control of a 3 degrees of freedom (3DO F) exoskeleton robot for human upper-limb motion assist”, Journal of the National Science Foundation of SriLanka, vol. 37(4), pp. 241-248, 2009.

H-J. Liu y K-Y. Young, “An Adaptive UpperArm EMG-Based Robot Control System”, International Journal of Fuzzy Systems, Vol. 12(3), pp. 181-189, 2010.

G. W. Favieiro y A. Balbinot, “Adaptive Neuro-Fuzzy Logic Analysis Based on Myoelectric Signals for Multifunction Prosthesis Control”, Proc. 33rd Annual International Conference of the IEEE EMBS, 2011, pp. 7888-7891.

J-S. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System”, IEEE Tran. Systems, Man and Cibernetics, vol. 23, pp. 665-685, 1996.

M. DiCicco, L. Lucas, Y. Matsuoka, “Comparison of Control Strategies for an EMG Controlled Orthotic Exoskeleton for the Hand”, Proceedings of the 2004 IEEE International Conference on Robotics & Automation, p.p. 1622- 1627.

M. Mulas, M. Folgheraiter, G. Gini, “An EMG-controlled Exoskeleton for Hand Rehabilitation”, Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, p.p. 371-374.

A. Wege, A. Zimmermann, “Electromyography Sensor Based Control for a Hand Exoskeleton, Proceedings of the 2007 IEEE Int. Conf. on Robotics and Biomimetics, p.p. 1470-1475.

Z.O. Khokhar, Z.G. Xiao, C.Menon, “Surface EMG pattern recognition for real-time control of a wrist exoskeleton”, BioMedical Engineering OnLine 2010, 9:41.

N.S.K. Ho, K.Y. Tong, X.L. Hu, K.L. Fung, X.J. Wei, W. Rong, and E.A. Susanto, “An EMGdriven Exoskeleton Hand Robotic Training Device on Chronic Stroke Subjects”, in Proc. IEEE Int. Conf. on Rehabilitation Robotics (ICORR), 2011, pp. 1 – 5.

Kazuo Kiguchi, Takakazu Tanaka, and Toshio Fukuda, “Neuro-Fuzzy Control of a Robotic Exoskeleton with EMG Signals”, IEEE Transactions on Fuzzy Systems Vol. 12, Issue 4, 2004, pp. 481 – 490.

M.A. Mikulski, “Electromyogram Control Algorithms for the Upper Limb Single-DOF Powered Exoskeleton”, in Proc. IEEE Int. Conf. on Human System Interactions (HSI), 2011, pp. 117 – 122.

R. Latif, S. Sanei, and K. Nazarpour, “Classification of elbow electromyography signals based on directed transfer functions”, in Proc. IEEE Int. Conf. on BioMedical Engineering and Informatics, 2008, pp. 371 – 374.

D. S. Andreasen, S.K. Allen, and D.A.Backus, “Exoskeleton with EMG Based Active Assistance for Rehabilitation”, in Proc. IEEE Int. Conf. on Rehabilitation Robotics, 2005, pp. 333 – 336.

R.A.R.C. Gopura and Kazuo Kiguchi, “Application of Surface Electromyographic Signals to Control Exoskeleton Robots”, en Applications of EMG in Clinical and Sports Medicine, 2012, Dr. Catriona Steele (Ed.), ISBN: 978-953-307-798-7.

J.M. Ochoa, M. Listenberger, D.G. Kamper, and S. Wook Lee, “Use of an Electromyographically Driven Hand Orthosis for Training after Stroke”, in Proc. IEEE Int. Conf. on Rehabilitation Robotics (ICORR), 2011, pp. 1 – 5.

A.C. Tsai, J.J. Luh, and T.T. Lin, “A Modified Multi-Channel EMG Feature for Upper Limb Motion Pattern Recognition”, 34th Annual International Conference of the IEEE EMBS, 2012, pp. 3596-3599.

T. Ando, M. Watanabe, K. Nishimoto, Y. Matsumoto, M. Seki, and M.G. Fujie, “Myoelectric-Controlled Exoskeletal Elbow Robot to Suppress Essential Tremor: Extraction of Elbow Flexion Movement Using STFTs and TDNN”, Journal of Robotics and Mechatronics, Vol. 24, No. 1, pp. 141-149, 2012.

D.P. Ferris, K.E. Gordon, G.S. Sawicki, A. Peethambaran, “An improved powered ankle–foot orthosis using proportional myoelectric control”, Gait & Posture 23 (2006) 425–428.

C. Fleischer and G. Hommel, “A Human–Exoskeleton Interface Utilizing Electromyography”, IEEE Transactions on Robotics, 2008, Vol. 24, No. 4, p.p. 872-882.

H. He and K. Kiguchi, “A Study on EMGBased Control of Exoskeleton Robots for Human Lower-limb Motion Assist”, in Proc. IEEE Int. Conf. on Information Technology Applications in Biomedicine, 2007, pp. 292 – 295.

Hui Yan, Ray P.S. Han, Yu Wang and JieruChi, “Controlling a Powered Exoskeleton System via Electromyographic Signals”, Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, 2009, p.p. 349-353.

Z. Zhang, J. Jiang, L. Peng, and H. Fan, “A Method to Control Ankle Exoskeleton with Surface Electromyography Signals”, In proceeding of: Intelligent Robotics and Applications - Third International Conference, ICIRA 2010, Shanghai, China, November 10-12, 2010, p.p. 390-397.

J.F. Veneman, R. Kruidhof, E.E.G. Hekman, R. Ekkelenkamp, E.H.F. Van Asseldonk, and H. van der Kooij, “Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 15, Issue 3, 2007, pp. 379 – 386.

E. Ceseracciu, M. Reggiani, Z. Sawacha, M. Sartori, F. Spolaor, C. Cobelli, E. Pagell, “SVM classification of locomotion modes using surface electromyography for applications in rehabilitation robotics”, RO-MAN, 2010 IEEE, pp. 165 –170.

Feng Zhang, Pengfeng Li, Zeng-Guang Hou, Yixiong Chen, Fei Xu, Jin Hu, Qingling Li, Min Tan, “SEMG Feature Extraction Methods for Pattern Recognition of Upper Limbs”, in Proc. IEEE Int. Conf. on Advanced Mechatronic Systems (ICAMechS), 2011, pp. 222 – 227.

X. Navarro, T.B. Krueger, N. Lago, S. Micera, T. Stieglitz, P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems, Journal of Peripheral Nervous Systems, 2005 Sep;10(3):229-58.

Published

2013-09-09
Metrics
Views/Downloads
  • Abstract
    1066
  • PDF (Español (España))
    142

How to Cite

López Delis, A., & Ruiz Olaya, A. F. (2013). Métodos Computacionales para el Reconocimiento de Patrones Mioeléctricos en el Control de Exoesqueletos Robóticos: una Revisión. INGE@UAN - TENDENCIAS EN LA INGENIERÍA, 3(5). Retrieved from https://revistas.uan.edu.co/index.php/ingeuan/article/view/350

Issue

Section

Artículo de investigación científica y tecnológica

Metrics