Design and implementation of the control system on-off the laser projector Lasiris Magnum II for SICAIPAV II system

Authors

  • Hernán Porras Díaz Universidad Industrial de Santander
  • Duván Y. Sanabria Echeverry Universidad Industrial de Santander
  • Luis Enrique Rueda Duarte Universidad Industrial de Santander
  • Wilmer Daniel Ramírez Vera Universidad Industrial de Santander

Keywords:

Control system, ultasonic sensor, relative encoder, Arduino development board

Abstract

Automatic inspection systems use laser technology pavements for co­llection pavement damage generating three dimensional images of high precision. However, depending on the category of laser may cause injury to people or animals. In Colombia, the automated system SICAIPAV 11 is developed for collecting three dimensional data of paved roads using a class IIIB laser projector. Maintain safety of operators and bystanders, and comply with Colombian law occupational safety and welfare are an indis­pensable requirement surveying in the field. This paper presents the design and implementation of a control electronic system for on-off laser projector automatic system using ultrasonic sensors, an encoder and an Arduino de­velopment board. The control system is coupled on the back of a vehicle and allows turned on or off the laser depending on the vehicle speed or proximity of people within an area approximately 3 m2. Finally, experimen­tal tests demonstrate the effectiveness of the system, with coverage of 52,9% of the area of risk and delay times 1,13 S.

Downloads

Download data is not yet available.

References

D. H. Timm and J. M. McQueen, “A Study Of Manual Vs Automated Pavement Condition Surveys,” Tech Report, Auburn, Alabama, 2004.

M. Gunaratne, S. Amarasiri, and S. Nasseri, “Investigation of Automated and Interactive Crack Measurement Systems,” Tampa, Florida, 2008.

X. Yu and E. Salari, “Pavement pothole detection and severity measurement using laser imaging,” in Electro/Information Technology (EIT), 2011 IEEE International Conference on, 2005, pp. 1–5.

K. Wang, “Designs and implementations of automated systems for pavement surface distress survey,” J. Infrastruct. Syst., vol. 6, no. 1, pp. 24–32, 2000.

Transportation research Board, Automated pavement distress collection techniques, Transporta., vol. 334. Washington, D.C: Transportation Research Board National Research, 2004.

H. Porras, J. Ramón, Y. Mejia, and J. Parra, “Sistemas automáticos para la adquisición de datos enfocados a examinar pavimentos flexibles (Aceptado),” Rev. Cienc. E Ing. Neogranadina, vol. 23, no. 2, pp. 79–98, 2014.

H. P. Díaz, J. Hernando, R. Suárez, D. Yahír, and S. Echeverry, “Diseño e implementación de un sistema automático para la recolección de datos sobre daños en pavimento , usando un enfoque tridimensional Design and implementation of an automated system for pavement distress data collection using a 3-D approach,” no. 5.

H. Porras Díaz, D. Y. Sanabria Echeverry, and Y. H. Mejía Melgarejo, “SISTEMA AUTOMÁTICO PARA LA ADQUISICIÓN DE IMÁGENES DE VÍAS PAVIMENTADAS,” Gerenc. Tecnológica Inform., vol. 12, no. 32, pp. 61–78, 2013.

M. de trabajo y asuntos sociales E. Trabajo, “NTP 261: Láseres: riesgos en su utilización,” 1991. [En línea]. Disponible: http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/NTP/Ficheros/201a300/ntp_261.pdf. [Accedido: 01-Jan-2015].

U. P. de Valencia, “LÁSER: CLASES, riesgos, medidas de control.” [En línea]. Disponible: LÁSER: CLASES, riesgos, medidas de control. [Accedido: 01-Jan-2015].

O. I. de S. Social, “Ley de higiene y seguridad ocupacional,” 1979. [En línea]. Disponible: http://www.oiss.org/estrategia/Ley-16998-Ley-General-de-Higiene-y.html. [Accedido: 01-Jan-2015].

Ministerio de trabajo y asuntos sociales España, “Láseres: nueva clasificación del riesgo (UNE EN 60825- 1 /A2: 2002),” 2002. [En línea]. Disponible: http://www.mapfre.com/documentacion/publico/i18n/catalogo_imagenes/grupo.cmd?path=1031557. [Accedido: 01-Jan-2015].

M. Sreejeth, M. Singh, P. Kumar, P. Varshney, and P. Sachdeva, “Implementation of Supervisory Control System for PMSMDrive,” in 5th India International Conferencenal Conference, 2012, pp. 1–6.

A. H. J. Moreira, J. Fonseca, and A. Tavares, “WinCE-based embedded system for control of an industrial screw machine,” in IECON Proceedings (Industrial Electronics Conference), 2009, pp. 2886–2891.

M. Ogawa and Y. Henmi, “Recent developments on PC+PLC based Control Systems for Beer Brewery Process Automation Applications,” in SICE-ICASE International Joint Conference, 2006, pp. 1053–1056.

G. W. Flintsch and K. K. McGhee, Quality management of pavement condition data collection, vol. 401. Washington, D.C: Transportation Research Board, 2009.

J. G. García, J. G. Ortega, A. S. García, and S. S. Martínez, “Fuzzy controller for the high-accuracy automatic assembly of vehicle headlamps,” in Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, 2010, pp. 1–8.

a. Araya, K. Sekiya, and Y. Shindo, “Laser-interferometric broadband seismometer for ocean borehole observations,” in International Symposium on Underwater Technology, UT 2007 - International Workshop on Scientific Use of Submarine Cables and Related Technologies 2007, 2007, no. April, pp. 245–248.

W. G. M. and P. W. R. G. Bookbinder, A. C. Hubbard, “Design of an ocean Bottom seismometer with response from 25 Hz to 100 seconds,” Strateg. Manag. J., vol. 165, no. July, pp. 510–515, 2003.

F. S. Najafabadi, E. Zahedi, and M. A. M. Ali, “A novel model for abdominal electrocardiography of a pregnant woman,” in 2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research - Proceedings, 2005, vol. 2005, pp. 64–68.

C. a. Wick, J. J. Su, O. Brand, J. H. McClellan, P. T. Bhatti, and S. Tridandapani, “A trimodal system for the acquisition of synchronous echocardiography, electrocardiography, and seismocardiography data,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2011, pp. 6911–6914.

Arduino, “Arduino.” [En línea]. Disponible: https://www.arduino.cc/en/Main/ArduinoBoardUno. [Accedido: 01-Jan-2015].

T. J. Maloney, Electronica industrial Moderna, 5ta ed. Mexico, 2006.

T. M. F. Elshafiey, “Design and implementation of a museum and banks security system using antenna as IR proximity sensor and PSoC technology,” in ISWTA 2011 - 2011 IEEE Symposium on Wireless Technology and Applications, 2011, pp. 156–161.

a. M. Sabatini, V. Genovese, E. Guglielmelli, A. Mantuano, G. Ratti, and P. Dario, “A low-cost, composite sensor array combining ultrasonic and infrared proximity sensors,” in Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, 1995, vol. 3, pp. 120–126.

D. T. Batarseh, T. N. Burcham, and G. M. McFadyen, “An ultrasonic ranging system for the blind,” in Proceedings of the 1997 16 Southern Biomedical Engineering Conference, 1997, no. pin 1, pp. 1–3.

C. Canali, G. De Cicco, B. Morten, M. Prudenziati, and A. Taroni, “A Temperature Compensated Ultrasonic Sensor Operating in Air for Distance and Proximity Measurements,” IEEE Trans. Ind. Electron., vol. IE-29, no. 4, pp. 336–341, 1982.

C. Gourley and M. Trivedi, “Sensor based obstacle avoidance and mapping for fast mobile robots,” in Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994, pp. 1306–1311.

D. Martins, M. Dasilva, W. Pruehsner, J. D. Enderle, and D. Ph, “Bump Around Automated Bumper Car,” in Proceedings of the IEEE 27th Annual Northeast, 2001, pp. 91–92.

S. D. M. S. D. Min, J. K. K. J. K. Kim, H. S. S. H. S. Shin, Y. H. Y. Y. H. Yun, C. K. L. C. K. Lee, and M. L. M. Lee, “Noncontact Respiration Rate Measurement System Using an Ultrasonic Proximity Sensor,” IEEE Sens. J., vol. 10, no. 11, pp. 1732–1739, 2010.

R. P. Areny, Sensores y acondicionadores de señal, Cuarta. 2003.

D. J. M. V. Iglesias, “Sensores de proximidad.” [En línea]. Disponible: http://www.dte.uvigo.es/recursos/proximidad/Sensores_Proximidad.swf. [Accedido: 01-Jan-2015]. [33] Dynamo, “Sensor ultrasonico EZ0.” [En línea]. Disponible: http://www.dynamoelectronics.com/index.php?option=com_virtuemart&page=shop.product_details&flypage=dynamo.tpl&category_id=78&product_id=987&Itemid=58. [Accedido: 01-Jan-2015].

J. P. Baeza and C. A. J. Bravo, “Experiencias sobre el uso de la plataforma Arduino en prácticas de Automatización y Robótica.” .

C. Bail and F. D. Antonio, “Proyecto Prácticas Procesadores Integrados : Self-Balancing Robot basado en Arduino,” pp. 159–166, 2015.

T. De De, “Introdduccion de la plataforma open source arduino para aplicaciones de dómotica y automatización en el CFGS sistemas electrotécnicos y automatizados.,” 2012.

ARDUINO, “Arduino.” [En línea]. Disponible: https://www.arduino.cc/en/pmwiki.php?n=Main/Boards.

B. Z. R. Vbv, V. Laockclq, J. O, M. Osjzxywogq, R. Kyi, and Q. I. U. Rqulvlqp, “E50S8, Diameter 50mm shaft type Incremental Rotatory encoder.” [En línea]. Disponible: http://www.autonics.com/products/products_detail.php?catecode=01/06/01&db_uid=59.

A. C. Solé, Instrumentacion industrial, Octava. Barcelona, España: Marcombo, 2010.

H. Performance and S. Range, “LV - MaxSonar ® - EZTM Series,” 2012. [En línea]. Disponible: http://maxbotix.com/documents/LV-MaxSonar-EZ_Datasheet.pdf.

Published

2016-02-24
Metrics
Views/Downloads
  • Abstract
    227
  • PDF (Español (España))
    80

How to Cite

Porras Díaz, H., Sanabria Echeverry, D. Y., Rueda Duarte, L. E., & Ramírez Vera, W. D. (2016). Design and implementation of the control system on-off the laser projector Lasiris Magnum II for SICAIPAV II system . INGE@UAN - TENDENCIAS EN LA INGENIERÍA, 6(11). Retrieved from https://revistas.uan.edu.co/index.php/ingeuan/article/view/412

Issue

Section

Artículo de investigación científica y tecnológica

Metrics