Public And Private Service Vehicle Classification In Bogotá using SVM and AdaBoost

Autores

  • Francisco Calderon Pontificia Universidad Javeriana
  • Carlos Alberto Parra Pontificia Universidad Javeriana

Palavras-chave:

AdaBosst, árboles binarios, OpenCV, reconocimiento de patrones, SVM, Ingeniería de tráfico, clasificación de vehículos

Resumo

Este artículo presenta el diseño e implementación y comparación de algoritmos para la clasificación de vehículos privados y públicos en Bogotá. El desempeño de estos algoritmos de clasificación es notable, y vale la pena anotar el impacto potencial que tendrían en la reducción de problemas de tráfico. Los datos experimentales fueron imágenes segmentadas de vídeos tomados sobre el tráfico en la ciudad de Bogotá. Por otro lado, los algoritmos que se utilizaron son máquinas de aprendizaje como Support Vector Machines “SVM” y Adaboost. Vale la pena notar, que se hizo uso de las librerías OpenCV implementadas en C.

Downloads

Não há dados estatísticos.

Referências

G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, Inc., 2008.

C. J. Burges, “A tutorial on support vector machines for pattern recogni- tion,” ell Laboratories, Lucent Technologies, 1998.

Calderon.F and Urrego.G, Conteo Automático De Vehículos. PUJ, Nov. 2008.

C. Cordoba, “Sobre la reproducción de la placa nacional,” Transito Y Transporte resolucion 538, 2001.

R. Duda, P. Hart, and D. Stork, Pattern classification. Wiley New York, 2001.

C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to support vector classification,” Department of Computer Science, Oct. 2008.

Yoav.F and Schapire. R.E, “A short introduction to boosting,” Japanese Society for Artificial Intelligence, Sep. 1999.

Publicado

2013-09-09
##plugins.generic.simpleStatistics.headline##
##plugins.generic.simpleStatistics.infotext##
  • Resumo
    51
  • PDF (Español)
    94

Como Citar

Calderon, F., & Parra, C. A. (2013). Public And Private Service Vehicle Classification In Bogotá using SVM and AdaBoost. INGE@UAN - TENDENCIAS EN LA INGENIERÍA, 3(5). Recuperado de https://revistas.uan.edu.co/index.php/ingeuan/article/view/348

Edição

Seção

Artículo de investigación científica y tecnológica

Métricas