Synthetic peptides in the development of alternative methods of diagnosis and control of human papillomavirus
DOI:
https://doi.org/10.54104/saywa.v4n5.1590Keywords:
HPV, bioreceptor, diagnosis, SPSS, cervical cancerAbstract
The development of new methods and/or devices for the diagnosis of diseases, toxic agents, contaminants, and other analytes of environmental, clinical, and biotechnological interest has been the subject of extensive studies. These studies prioritize the various interactions that can occur between the analyte and the molecule responsible for recognition, also known as the bioreceptor. This review presents some strategies that have been developed over the past 20 years for the early detection of human papillomavirus (HPV) infection.
Currently, HPV is one of the most common sexually transmitted infections. While the majority of infections are transient and do not cause diseases, some infections can persist and lead to cervical cancer. The most widely used bioreceptors for designing new diagnostic methods are typically synthetic peptides derived from the L1 proteins of the human papillomavirus. The development of an efficient, cost-effective, sensitive, and specific bioreceptor for antibodies generated by HPV is crucial for the advancement of these new diagnostic tools.
Downloads
References
Mehrotra P. Biosensors and their applications - A review. J Oral Biol Craniofacial Res. 2016;6(2):153-159. doi:10.1016/j.jobcr.2015.12.002.
Torres E, Mendez A. Biosensores enzimáticos. 2014;15:1-8.
Evtugyn G. Biosensors : Essentials. Kazan, Russia: Springer; 2014.
Turner APF. Biosensors: sense and sensibility. Chem Soc Rev. 2013;42(8):3184-3196. doi:10.1039/c3cs35528d.
Bobade S, Kalorey DR, Warke S. Biosensor Devices: A review on their biological applications. Biosci Biotechnol Res Commun. 2016;9(1):132-137.
Wang J. Glucose Biosensors : 40 Years of Advances and Challenges. Eletroanalysis. 2001;1312:983-988.
Howl J. Peptide Synthesis and Applications. Humana Press Inc.; 2005. doi:10.1007/978-1-62703-544-6.
Merrifield RB. Solid Phase Peptide Synthesis. II. The Synthesis of Bradykinin. J Am Chem Soc. 1964;86(2):304-305. doi:10.1021/ja01056a056.
Bruni L, Barrionuevo-Rosas L, Albero G, Serrano B, Mena M, Gómez D, Muñoz J, Bosch FX de SS. Human Papillomavirus and Related Diseases Report.; 2017. http://www.hpvcentre.net/statistics/reports/XWX.pdf.
Palefsky J. Human papillomavirus infection and its role in the pathogenesis of anal cancer. Semin Colon Rectal Surg. 2017;28(2):57-62. doi:10.1053/j.scrs.2017.04.001.
Stanley M. Immune responses to human papillomavirus. 2006;1(September 2005):16-22. doi:10.1016/j.vaccine.2005.09.002.
Organization WH. GUIDE TO CANCER Guide to Cancer Early Diagnosis.; 2017.
Organization WH. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol 90 HPV.; 2007. http://monographs.iarc.fr/ENG/Monographs/vol90/mono90-6.pdf%5Cnhttp://monographs.iarc.fr/ENG/Monographs/vol100B/mono100B-11.pdf.
Valentino K, Poronsky CB. Human Papillomavirus Infection and Vaccination. J Pediatr Nursing-Nursing Care Child Fam. 2016;31(2):E155-E166. doi:10.1016/j.pedn.2015.10.005.
de Sanjosé S, Brotons M, Pavón MA. The natural history of human papillomavirus infection. Best Pract Res Clin Obstet Gynaecol. 2017. doi:10.1016/j.bpobgyn.2017.08.015.
Bernard H, Burk D, Chen Z, Doorslaer K, Hausen V, Villiers M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;6(1):247-253. doi:10.1111/j.1743-6109.2008.01122.x.Endothelial.
Harden ME, Munger K. Human papillomavirus molecular biology. Mutat Res - Rev Mutat Res. 2017;772:3-12. doi:10.1016/j.mrrev.2016.07.002.
Beltrán-Lissabet, J.F. Aspectos generales sobre la estructura y función de las proteínas codificadas por el virus del Papiloma Humano. Revista CENIC Ciencias Biológicas, Vol. 45, No. 2, pp. 108-118, mayo-agosto, 2014..
M.E. Harden, K. Munger, Human papillomavirus molecular biology, Mutat. Res.: Rev. Mutat. Res. (2016), http://dx.doi.org/10.1016/j.mrrev.2016.07.002
Van Doorslaer K, Tan Q, Xirasagar S, et al. The Papillomavirus Episteme: A central resource for papillomavirus sequence data and analysis. Nucleic Acids Res. 2013;41(D1):571-578. doi:10.1093/nar/gks984.
Organization WH. Comprehensive Cervical Cancer Control: A guide to essential practice. WHO Libr. 2014.
Snodgrass R, Naugler C. Use of the Papanicolaou Test in Women Under 25 Years of Age in Southern Alberta. J Obstet Gynaecol Canada. 2014;36(4):320-323. doi:10.1016/S1701-2163(15)30607-1.
Waxman AG, Zsemlye MM. Preventing Cervical Cancer : The Pap Test and the HPV Vaccine. 2008;92:1059-1082. doi:10.1016/j.mcna.2008.04.012.
Molijn A, Kleter B, Quint W, Doorn L Van. Molecular diagnosis of human papillomavirus ( HPV ) infections. 2005:43-51. doi:10.1016/j.jcv.2004.12.004.
Gnanamony M, Peedicayil A, Subhashini J, et al. Gynecologic Oncology Detection and quantitation of HPV 16 and 18 in plasma of Indian women with cervical cancer. Gynecol Oncol. 2010;116(3):447-451. doi:10.1016/j.ygyno.2009.10.081.
Rasooly A, Jacobson J. Development of biosensors for cancer clinical testing. 2006;21:1851-1858. doi:10.1016/j.bios.2006.01.003.
Buck CB, Day PM, Trus BL. The papillomavirus major capsid protein L1. Virology. 2013;445(1-2):169-174. doi:10.1016/j.virol.2013.05.038.
Mitchell AR. Studies in solid-phase peptide synthesis: A personal perspective. Biopolymers. 2008;90(3):215-233. doi:10.1002/bip.20812.
Vergel Galeano CF, Rivera-Monroy ZJ, Rosas-Pérez JE, García-Castañeda JE. Efficient synthesis of peptides with 4-methylpiperidine as Fmoc removal reagent by solid phase synthesis. J Mex Chem Soc. 2014;58(4):386-392.
Lang Kuhs KA, Pawlita M, Gibson SP, et al. Characterization of human papillomavirus antibodies in individuals with head and neck cancer. Cancer Epidemiol. 2016;42:46-52. doi:10.1016/j.canep.2016.03.003.
Sethi S, Müller M, Schneider A, et al. Serologic response to the E4, E6, and E7 proteins of human papillomavirus type 16 in pregnant women. Am J Obstet Gynecol. 1998;178:360-364.
Wideroff L, Schiffman M, Haderer P, et al. Seroreactivity to human papillomavirus types 16, 18, 31, and 45 virus-like particles in a case-control study of cervical squamous intraepithelial lesions. J Infect Dis. 1999;180(5):1424-1428. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10515799.
Santamaria H, Manoutcharian K, Rocha L, et al. Identification of peptide sequences specific for serum antibodies from human papillomavirus-infected patients using phage display libraries. Clin Immunol. 2001;101(3):296-302. doi:10.1006/clim.2001.5126.
Rocha-Zavaleta L, Ambrosio JP, de Lourdes Mora-Garcia M, et al. Detection of antibodies against a human papillomavirus (HPV) type 16 peptide that differentiate high-risk from low-risk HPV-associated low-grade squamous intraepithelial lesions. J Gen Virol. 2004;85(9):2643-2650. doi:10.1099/vir.0.80077-0.
Jeong N-H, Lee N-W, Woo M-K, Kim H-J. Serologic response to human papillomavirus type 16 virus-like particles in Korean women with cervical precancerous and cancerous lesions. Arch Pharm Res. 2009;32(3):383-389. doi:10.1007/s12272-009-1311-1.
Liu G, Markowitz LE, Hariri S, Panicker G, Unger ER. Seroprevalence of 9 human papillomavirus types in the United States, 2005-2006. J Infect Dis. 2016;213(2):191-198. doi:10.1093/infdis/jiv403.
Urquiza M, Guevara T, Espejo F, Bravo MM, Rivera Z, Patarroyo ME. Two L1-peptides are excellent tools for serological detection of HPV-associated cervical carcinoma lesions. 2005;332:224-232. doi:10.1016/j.bbrc.2005.04.115.
Downloads
Published
-
Abstract103
-
PDF (Español)102
How to Cite
Issue
Section
License
Copyright (c) 2022 Germán Antonio García Contreras
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.