Nanocompuestos de plata: Materiales compuestos polivalentes

Auteurs

Mots-clés :

nanocompuestos, nanopartículas de plata, bacteriostáticos, bactericidas, propiedades paramagnéticas

Résumé

Las nanopartículas de plata (AgNPs) se han  convertido en una alternativa prometedora para la obtención de nuevos agentes antibacterianos. Sin embargo, se han encontrado numerosas investigaciones que han identificado que las AgNPs presentan toxicidad para las células eucariotas, generando consecuencias inflamatorias, oxidativas y genotóxicas debido a su poca especificidad para un tejido blanco (tejido al cual se dirige el tratamiento), así como la contaminación en el agua donde han sido utilizadas (contaminación hídrica), generando una preocupación a nivel ambiental. Una de las alternativas para este tipo de problemática es el empleo de un núcleo magnético en las nanopartículas de plata, esto permitiría mejorar los procesos de separación y reutilización, mediante la formación de nanocompuestos de plata (AgNCs). De esta manera los AgNCs podrían ser empleados como un agente bactericida los cuales después de haber sido utilizados podrían ser removidos, evitando así la contaminación del medio en el cual es aplicado

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

● Asmat Aguirre, E. C., & Asmat Aguirre, S. N. (2019). Efecto de las nanoparticulas de plata sobre Salmonella tiphy y Streptococcus pyogenes in vitro [Universidad Nacional de Trujillo]. http://dspace.unitru.edu.pe/bitstream/handle/UNITRU/12233/Asmat Aguirre Sandra Natier.pdf?sequence=1&isAllowed=y

● Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 169(November 2018), 483–493. https://doi.org/10.1016/j.envres.2018.11.040

● Cai, Y., Cao, C., Zhang, T., Xu, H., & Pan, Y. (2017). Ferrimagnetic ferritin cage nanoparticles used as MRI contrast agent. AGUFM, 2017, GP23A-0903.

● Changanaqui Barrientos, K., Alvarado Iparraguirre, D. E., & Alarcón Cavero, H. A. (2019). Síntesis y caracterización de nanocompuestos Fe3O4 /Ag: su efecto contra Enterobacter aerogenes y Enterococcus faecalis. Revista Colombiana de Química, 48(2), 33–39. https://doi.org/10.15446/rev.colomb.quim.v48n2.73724

● Dadfar, S. M., Roemhild, K., Drude, N. I., von Stillfried, S., Knüchel, R., Kiessling, F., & Lammers, T. (2019). Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanced Drug Delivery Reviews, 138, 302–325. https://doi.org/10.1016/j.addr.2019.01.005

● Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. 7(November), 1–17. https://doi.org/10.3389/fmicb.2016.01831

● Das, B., Dash, S. K., Mandal, D., Ghosh, T., Chattopadhyay, S., Tripathy, S., Das, S., Dey, S. K., Das, D., & Roy, S. (2017). Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arabian Journal of Chemistry, 10(6), 862–876. https://doi.org/10.1016/j.arabjc.2015.08.008

● Deshmukh, S. P., Patil, S. M., Mullani, S. B., & Delekar, S. D. (2019). Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering C, 97(July 2018), 954–965. https://doi.org/10.1016/j.msec.2018.12.102

● Gil-Sánchez, I., Monge, M., Bernáldez, A., Tamargo, A., Cueva, C., Llano, D. G. de, Bartolomé, B., & Moreno-Arribas, M. V. (2016). New challenges in the application of biocompatible silver nanoparticles in enology: Antimicrobial capacity, digestibility and potential cytotoxicity. BIO Web of Conferences, 7, 02028. https://doi.org/10.1051/bioconf/20160702028

● Herrero de la Parte, B. (2017). Hipertermia magnética antitumoral medi a da por nanopartículas magnéticas RGD en el tratamiento de metástasis hepáticas en un modelo experimental murino [Universidad de Pais Vasco]. http://www.oc.lm.ehu.es/Departamento/Investigacion/TesisPDF/Tesis Doctoral B Herrero de la Parte.pdf

● Huang, D., Yan, X., Yan, M., Zeng, G., Zhou, C., Wan, J., Cheng, M., & Xue, W. (2018). Graphitic Carbon Nitride-Based Heterojunction Photoactive Nanocomposites: Applications and Mechanism Insight [Review-article]. ACS Applied Materials and Interfaces, 10(25), 21035–21055. https://doi.org/10.1021/acsami.8b03620

● Katherina, C. B., Alvarado Iparraguirre, D., & Alarcón Cavero, H. (2019). Síntesis y caracterización de nanocompuestos Fe3O4/Ag: su efecto contra Enterobacter aerogenes y Enterococcus faecalis. Revista Colombiana de Química, 48(2), 33–39.

● Kefeni, K. K., Mamba, B. B., & Msagati, T. A. M. (2017). Application of spinel ferrite nanoparticles in water and wastewater treatment: A review. Separation and Purification Technology, 188, 399–422. https://doi.org/10.1016/j.seppur.2017.07.015

● Kharisov, B. I., Dias, H. V. R., & Kharissova, O. V. (2019). Mini-review : Ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry, 12(7), 1234–1246. https://doi.org/10.1016/j.arabjc.2014.10.049

● Khodashenas, B., & Ghorbani, H. R. (2019). Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry, 12(8), 1823–1838. https://doi.org/10.1016/j.arabjc.2014.12.014

● Kulkarni, S. K. (2015). Nanotechnology : Principles and Practices (3rd Editio). Springer International Publishing.

● Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339–354. https://doi.org/10.1016/j.nantod.2015.04.002

● Lizarazo Salcedo, C. G., González Jiménez, E. E., Arias Portela, C. Y., & Guarguati Ariza, J. (2018). Nanomateriales: un acercamiento a lo básico Nanomaterials: Being Closer to Basics. In Nanomateriales: Artículo especial Med Segur Trab (Internet) (Vol. 64, Issue 251).

● Llamosa, D. (2018). Nanomundo (1st ed.). Universidad Antonio Nariño.

● Ludwig, F., Balceris, C., Jonasson, C., & Johansson, C. (2017). Analysis of AC Susceptibility Spectra for the Characterization of Magnetic Nanoparticles. IEEE Transactions on Magnetics, 53(11), 0–3. https://doi.org/10.1109/TMAG.2017.2693420

● Luna, L. A. V., Moraes, A. C. M., Consonni, S. R., Pereira, C. D., Cadore, S., Giorgio, S., & Alves, O. L. (2016). Comparative in vitro toxicity of a graphene oxide-silver nanocomposite and the pristine counterparts toward macrophages. Journal of Nanobiotechnology, 14(1), 1–17. https://doi.org/10.1186/s12951-016-0165-1

● Medina-Ramírez, I. E., Arzate-Cardenas, M. A., Mojarro-Olmos, A., & Romo-López, M. A. (2019). Synthesis, characterization, toxicological and antibacterial activity evaluation of Cu@ZnO nanocomposites. Ceramics International, 45(14), 17476–17488. https://doi.org/10.1016/j.ceramint.2019.05.309

● Nemati, Z., Alonso, J., Khurshid, H., Phan, M. H., & Srikanth, H. (2016). Core/shell iron/iron oxide nanoparticles: Are they promising for magnetic hyperthermia? RSC Advances, 6(45), 38697–38702. https://doi.org/10.1039/c6ra05064f

● Prucek, R., Tuček, J., Kilianová, M., Panáček, A., Kvítek, L., Filip, J., Kolář, M., Tománková, K., & Zbořil, R. (2011). The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials, 32(21), 4704–4713. https://doi.org/10.1016/J.BIOMATERIALS.2011.03.039

● Rajeev, L. (2018). Antibiotic Discovery. Materials and Methods, 8. https://doi.org/10.13070/mm.en.8.2671

● Remediación, L. A., & Contaminadas, D. E. A. (2020). Biosíntesis de nanopartículas de hierro (fe 3 o 4 ) en la remediación de aguas contaminadas. 24, 35–45.

● Riaz Ahmed, K. B., Nagy, A. M., Brown, R. P., Zhang, Q., Malghan, S. G., & Goering, P. L. (2017). Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicology in Vitro, 38, 179–192. https://doi.org/10.1016/j.tiv.2016.10.012

● Ruiz, M., Cermeño, C., & Benites, E. (2019). Magnetite nanoparticles for reduction of hexavalent chrome in soil of an industrial park, Cerro Colorado - Arequipa. Journal of Nanotechnology, 3(1), 12–17.

● Salih, H. H. M., Badawy, A. M. El, Tolaymat, T. M., Patterson, C. L., Survey, S. G., Obispo, S. L., Agency, E. P., Risk, N., Martin, W., & King, L. (2020). Removal of Stabilized Silver Nanoparticles from Surface Water by Conventional Treatment Processes. 513, 1–18. https://doi.org/10.4236/anp.2019.82002.Submit

● Sánchez, A., Ovejero Paredes, K., Ruiz-Cabello, J., Martínez-Ruíz, P., Pingarrón, J. M., Villalonga, R., & Filice, M. (2018). Hybrid Decorated Core@Shell Janus Nanoparticles as a Flexible Platform for Targeted Multimodal Molecular Bioimaging of Cancer. ACS Applied Materials and Interfaces, 10(37), 31032–31043. https://doi.org/10.1021/acsami.8b10452

● Soler Illia, G. (2009). Nanotecnología: el desafío del siglo XXI (B. A. Eudeba (ed.); 1ra Edició). Ebook Central Perpetual y títulos DDA (ProQuest). https://ebookcentral.proquest.com/lib/bibliouansp/reader.action?docID=3186458

● Sood, A., Arora, V., Shah, J., Kotnala, R. K., & Jain, T. K. (2017). Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Materials Science and Engineering C, 80, 274–281. https://doi.org/10.1016/j.msec.2017.05.079

● Tavakkoli, M., Kallio, T., Reynaud, O., Nasibulin, A. G., Sainio, J., Jiang, H., Kauppinen, E. I., & Laasonen, K. (2016). Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 4(14), 5216–5222. https://doi.org/10.1039/c6ta01472k

● Twardowski, T. E. (2007). Introduction to nanocomposite materials : properties, processing, characterization (P. : D. P. I. . ©2007. Lancaster (ed.)). https://www.worldcat.org/title/introduction-to-nanocomposite-materials-properties-processing-characterization/oclc/148752694

● Udaya, K., & Sunil, M. (2020). Graphene as Energy Storage Material for Supercapacitors (I. Rajender, M. Faraz, & A. Asiri (eds.); Vol. 64). Materials Research Forum LLC, USA. https://books.google.com.co/books?hl=es&lr=&id=juTJDwAAQBAJ&oi=fnd&pg=PA181&dq=nanocomposites+applications&ots=ruP1rRik0K&sig=eeGd2avDRWT-KzW44sghFx_98Kc#v=onepage&q=nanocomposites applications&f=false

● Vallabani, N. V. S., & Singh, S. (2018). Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech, 8(6), 1–23. https://doi.org/10.1007/s13205-018-1286-z

● Ventola, C. L. (2015). The antibiotic resistance crisis. P & T : A Peer-Reviewed Journal for Formulary Management, 40(4), 277–283. http://www.ncbi.nlm.nih.gov/pubmed/25859123

● Villegas, J. P., Arcila, N., Ortega, D., Franco, C. A., & Cortés, F. B. (2017). Remoción de hidrocarburos de aguas de producción de la industria petrolera utilizando nanointermedios compuestos por SiO2 funcionalizados con nanopartículas magnéticas. DYNA (Colombia), 84(202), 65–74. https://doi.org/10.15446/dyna.v84n202.63686

● Wani, I. A., Ganguly, A., Ahmed, J., & Ahmad, T. (2011). Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies. Materials Letters, 65(3), 520–522. https://doi.org/10.1016/j.matlet.2010.11.003

● Zhang, L., Wu, L., Si, Y., & Shu, K. (2018). Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PLoS ONE, 13(12), 1–18. https://doi.org/10.1371/journal.pone.0209020

Téléchargements

Publiée

2021-09-29
Métriques
Vues/Téléchargements
  • Résumé
    296
  • PDF (Español)
    127

Comment citer

Lota Mendoza, C. A. ., Murillo Romero, G. A. ., LLamosa Pérez, D. ., & Rincón Ortiz, R. J. . (2021). Nanocompuestos de plata: Materiales compuestos polivalentes . REVISTA SAYWA, 2(3). Consulté à l’adresse https://revistas.uan.edu.co/index.php/saywa/article/view/803

Numéro

Rubrique

Ciencia Aplicada

##plugins.generic.badges.manager.settings.showBlockTitle##

Articles les plus lus par le même auteur ou la même autrice