Prótesis Transfemoral Electromecánica, Controlada a Base de Señales Mioeléctricas
Keywords:
Electromyography signals, computer desing, fuzzy control, prosthesisAbstract
This paper shows the steps followed for the design and construction of a electromecanically controlled transfemoral prosthesis based on myoelectric signals. The design of the prosthesis was performed in the first place. For this purpose it was necessary to fulfill two processes. The first one consisted of computer-aided design, where the multiple parts and components of the prosthesis were elaborated, according to the desired measurements and dimensions. The second one was a simulation through computer-aided engineering. Here, the prosthesis was computationally tested for motion, strength, speed and position.
After carrying out these steps and with the veracity of the adequate functioning of the prosthesis, its construction was performed proposing to give an optimum balance between economy and high standards of product quality.
The control of the prosthesis was Sugeno-type fuzzy. It begins with the capture of the non-invasive mode of myoelectric signals by means of surface electrodes under SENIAM recommendations, from the muscle group formed by the biceps femoris, rectus femoris and tensor fascia lata, as well as signals from sensors such as strain gages and accelerometers.
This set of signals shows the angle of flexion or extension to which the patient wishes to move the leg. After being treated, these signals are the inputs of a microcontroller which is responsible for its processing and for generating what refers to the control of the actuator component (DC motor), and this is how the prosthesis is moved, according to the level of intention and / or muscle activity of the patient.
The purpose of this project has a social emphasis, where this prosthesis is intended to serve as a functional solution to transfemoral amputees and could provide mobility through their myoelectric signals. In addition, developing optimum biomechanical processes and having a balance between economy and quality.
Downloads
References
Departamento Nacional de Estadística (DANE). [Web en línea]. <http://www.dane.gov.co>. [Consulta: 14-11-2010].
ICBL Minas Antipersona. [Web en línea] <http://www.icbl.org/lm/2007/colombia.html>. [Consulta: 15-11-2010].
J. A. Villacrosa, Amputaciones del miembro inferior en cirugía vascular, un problema multidisciplinar, Barcelona: Editorial Glosa, pp. 127-132, 2003.
M. Gonzales Viejo, Amputación de extremidad inferior y discapacidad. Prótesis y rehabilitación, Barcelona: Editorial
Masson, pp. 13-25, 2005.
L. Tolosa, “Desarrollo de un Algoritmo para generar una Señal de Control para una Prótesis Mioeléctrica de Rodilla”.
En: Memories of the 4th Latin American Congress on Biomedical Engineering, 2007.
O.I. Campo, “Uso de vibraciones musculares para identificar la intención de movimiento en amputados transfemorales”. En: Memorias del 8th Congreso Iberoamericano de Ingenieria Mecánica, 2007.
A. Muñoz, “Investigación y desarrollo de nueva metodología de diseño basada en patrones de células madres y clonación artificial de una prótesis mioeléctrica de miembro inferior para discapacitados de la violencia”, En: Revista Colombiana de Tecnologías de Avanzada. Pamplona, No. 16, 2010.
Teleton. [Web en línea]. <http://www.teleton.org.co>. [Consulta: 17-11-2010].
Cirec. [Web en línea]. <http://www.cirec.org>. [Consulta: 16-11-2010].
United for Colombia. [Web en línea]. <http://www.unitedforcolombia.org>. [Consulta: 05-03-2011].
Mahavir Kmina. [Web en línea]. <http://www.mahavirkmina.org>. [Consulta: 05-03-2011].
Otto Bock. [Web en línea]. <http://www.ottobock.com>. [Consulta: 23-10-2010].
Ossur. [Web en línea]. <http://www.ossur.com>. [Consulta:04-04-2011].
Fillauer. [Web en línea]. <http://www.fillauer.com>. [Consulta:17-11-2010].
Ohio Willow Wood. [Web en línea]. <http://www.owwco.com>. [Consulta: 16-11-2010].
Endolite. [Web en línea]. <http://www.endolite.com>. [Consulta: 16-11-2010].
A. Castillo Moreno, Breve historia de las prótesis en México, México: Moderna, p. 98, 2000.
M. E. Andrade Maquilón y N.E. Paz Ruíz, Diseño y construcción de prótesis transfemoral electromecánica,
controlada a base de señales mioeléctricas. [Tesis de pregrado]. Popayán: Universidad Antonio Nariño, 2011.
E. Cocero, E. Recuero, Introducción a la Electromiografía y a la Conducción Eléctrica del Nervio Periférico, Madrid, 1971.
J. Cram, G. Kasman, J. Holtz, Introduction to Surface Electromyography. Aspen Publishers Inc.; Gaithersburg,
Maryland, 1998.
A. Velasco Guzmán, Manual de la fisiología articular, Bogotá: Manual Moderno, p. 101-103, 2007.
Universidad de Washington. [Web en línea]. <http://depts.washington.edu/msatlas/> [Consulta: 10-04-2011].
J. Daza, Test de movilidad articular y examen muscular de las extremidades. Bogotá: Médica Internacional, pp. 186-189, 1996.
SENIAM [Web en línea] <http://www.seniam.org/>. [Consulta: 03-10-2010]
Electroterapia. [Web en línea]. <http://www.electroterapia.com/figuras/puntmus.gif> [Consulta: 03-10-2010]
J. Delgado Saa. Electromiografía, Madrid.
Downloads
Published
-
Abstract365
-
PDF (Español)318
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.