Detección vehicular mediante teénicas de visión de máquina
Keywords:
traffic flow, haar classifier, machine visionAbstract
This paper outlines the results of design of a Haar classifier, which operate according to rectangular descriptors related to the intensity of an image region, for the detection of cars in order to establish the amount of vehicular traffic on a road, supported on the information from video surveillance cameras. The training of the classifier takes place obtaining a percentage of correct detection of 92.9%, and compared the results against machine vision techniques such as optical flow, showing superior performance in more than 30%. Processing times obtained are average of 40 milliseconds.
Downloads
References
D. Robles, P. Ñañez, N. Quijano, Control y Simulación de Tráfico Urbano en Colombia: Estado del Arte. Revista de Ingeniería No. 29, Universidad de los Andes. Bogotá, Colombia. ISSN: 0121-4993. 2009.
M. Wiering, J. Van Veenen, J. Vreeken, A. Koopman, Intelligent Traffic Light Control. Institute of Information and Computing Sciences. Utrecht University. 2004.
Consulta enero de 2012. Disponible en: http://www.quadrex.es/fichaC.php?c=18&area=A.
A. Ajmal, I. Hussain, Vehicle Detection Using Morphological Image Processing Technique.
P. Viola and M. Jones. Rapid Object Detection using a Boosted Cascade of Simple Features, IEEE. 2001.
R. Jiménez, F. Prieto y V. Grisales, Detection of the Tiredness Level of Drivers Using Machine Vision Techniques. CERMA IEEE. pp 97-102. 2011.
R. Krishna Radha, Speeding up Adaboost Object Detection with Motion Segmentation and Haar Feature Acceleration.
P. Viola, M. Jones, Robust Real-time Object Detection.
O. H. Jensen, Implementing the Viola-Jones Face Detection Algorithm.
L. Rainer, A. Kuranov, P. Vadim, Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection.
Downloads
Published
-
Abstract76
-
PDF (Español)75
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.