Detección vehicular mediante teénicas de visión de máquina

Authors

  • Robinson Jiménez Moreno Universidad Militar
  • Fabio Espinosa V. Universidad Militar
  • Oscar Aviles Universidad Militar
  • Dario Amaya Hurtado Universidad Militar
  • Camilo Gordillo C Universidad Militar

Keywords:

traffic flow, haar classifier, machine vision

Abstract

This paper outlines the results of design of a Haar classifier, which operate according to rectangular descriptors related to the intensity of an image region, for the detection of cars in order to establish the amount of vehicular traffic on a road, supported on the information from video surveillance cameras. The training of the classifier takes place obtaining a percentage of correct detection of 92.9%, and compared the results against machine vision techniques such as optical flow, showing superior performance in more than 30%. Processing times obtained are average of 40 milliseconds.

Downloads

Download data is not yet available.

References

D. Robles, P. Ñañez, N. Quijano, Control y Simulación de Tráfico Urbano en Colombia: Estado del Arte. Revista de Ingeniería No. 29, Universidad de los Andes. Bogotá, Colombia. ISSN: 0121-4993. 2009.

M. Wiering, J. Van Veenen, J. Vreeken, A. Koopman, Intelligent Traffic Light Control. Institute of Information and Computing Sciences. Utrecht University. 2004.

Consulta enero de 2012. Disponible en: http://www.quadrex.es/fichaC.php?c=18&area=A.

A. Ajmal, I. Hussain, Vehicle Detection Using Morphological Image Processing Technique.

P. Viola and M. Jones. Rapid Object Detection using a Boosted Cascade of Simple Features, IEEE. 2001.

R. Jiménez, F. Prieto y V. Grisales, Detection of the Tiredness Level of Drivers Using Machine Vision Techniques. CERMA IEEE. pp 97-102. 2011.

R. Krishna Radha, Speeding up Adaboost Object Detection with Motion Segmentation and Haar Feature Acceleration.

P. Viola, M. Jones, Robust Real-time Object Detection.

O. H. Jensen, Implementing the Viola-Jones Face Detection Algorithm.

L. Rainer, A. Kuranov, P. Vadim, Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection.

Published

2013-05-14
Metrics
Views/Downloads
  • Abstract
    76
  • PDF (Español)
    75

How to Cite

Jiménez Moreno, R., Espinosa V., F., Aviles, O., Amaya Hurtado, D., & Gordillo C, C. (2013). Detección vehicular mediante teénicas de visión de máquina. INGE@UAN - TENDENCIAS EN LA INGENIERÍA, 2(4). Retrieved from https://revistas.uan.edu.co/index.php/ingeuan/article/view/343

Issue

Section

Artículo de investigación científica y tecnológica

Metrics