Síndrome de Klinefelter: una revisión integral más allá del cariotipo 47 XXY
DOI:
https://doi.org/10.54104/saywa.v4n5.1588Palavras-chave:
Síndrome de Klinefelter (KS), aberración cromosómica, Cariotipo 47XXY, revisión sistemáticaResumo
El síndrome de Klinefelter se define como una condición patológica cuya etiología responde a una aberración cromosómica en el varón cuyo cariotipo característico es el 47 XXY. Con una prevalencia anual entre los 85 y 250 por 100.000 nacidos vivos se considera la patología cromosómica más frecuente. La ausencia de signos clínicos en las primeras décadas de la vida lleva a un diagnóstico tardío asociado a alteraciones metabólicas, vasculares y sobretodo hormonales que impactan de manera negativa en quien padece la condición. En respuesta al infra diagnóstico de esta condición médica se evidencia la necesidad de conocer los procesos genéticos y epigenéticos que explican la aparición de la enfermedad; en aras de cumplir dicho objetivo se realizó una revisión sistemática de la literatura en las principales bases de datos en investigación médica, tras aplicar los criterios de inclusión del material bibliográfico obtenido se filtraron 50 artículos cuyo análisis y consolidación conduce a la elaboración de un documento actualizado y que en virtud de la evidencia científica representa una guía importante en la compresión y abordaje de pacientes con síndrome de Klinefelter.
Downloads
Referências
Akcan, N., Poyrazoğlu, Ş., Baş, F., Bundak, R., & Darendeliler, F. (2018). Klinefelter Syndrome in Childhood: Variability in Clinical and Molecular Findings. Journal of Clinical Research in Pediatric Endocrinology, 100-107.
Aliberti, L., Gagliardi, L., & Bigoni, S. (2022). Communicating the diagnosis of Klinefelter syndrome to children and adolescents: when, how, and who? J Community Genet, 313-321.
Alowaysi, M., Fiacco, E., Astro, V., & Adamo, A. (2020). Establishment of iPSC lines from a high- grade Klinefelter Syndrome patient (49-XXXXY) and two genetically matched healthy relatives (KAUSTi003-A, KAUSTi004-A, KAUSTi004-B, KAUSTi005-A, KAUSTi005-B, KAUSTi005-C). Stem Cell Res, 245-255.
Alowaysi, M., Fiacco, E., Astro, V., & Adamo, A. (2020). Establishment of an iPSC cohort from three unrelated 47-XXY Klinefelter Syndrome patients (KAUSTi007-A, KAUSTi007-B, KAUSTi009- A, KAUSTi009-B, KAUSTi010-A, KAUSTi010-B). Stem Cell Res, 152-158.
Bar, G., Lunenfeld, E., & Levitas, E. (2014). Klinefelter syndrome: genetic aspects, characteristics and reproduction--present and future. Israel Medicine Association, 342 - 366.
Bearelly, P., & Oates, R. (2019). Recent advances in managing and understanding Klinefelter syndrome. F1000 research, 112-123.
Beumer, C., & Brehm, R. (2020). 41,XX Y * male mice: An animal model for Klinefelter syndrome.
Am J Med Genet C Semin Med Genet, 267-278.
Bonomi, M., Rochira, V., Pasquali, D., Balercia, G., Jannini, E., & Ferlin, A. (2017). Klinefelter syndrome (KS): genetics, clinical phenotype and hypogonadism. journal of endocrinology investigation, 123-134.
Cannarella, R., Salemi, M., Condorelli, R., Cimino, L., Giurato, G. M., Cordella, A., . . . Calogero, A. (2021). SOX13 gene downregulation in peripheral blood mononuclear cells of patients with Klinefelter syndrome. Asian Journal of Andrology, 157-162.
Central hypogonadism in Klinefelter syndrome: report of two cases and review of the literature. (2021). J Endocrinol Invest., 459-470.
Chang, S., Skakkebæk, A., & Højbjerg, G. (2015). Klinefelter Syndrome and medical treatment: hypogonadism and beyond. Hormones (Athens), 531-48.
Cimino, L., Salemi, M., Cannarella, R., Condorelli, R., Giurato, G., Marchese, G., . . . Calogero, A. (2017). Decreased miRNA expression in Klinefelter syndrome. Scientific Reports.
Crawford, D., & Dearmun, A. (2017). Klinefelter syndrome. Nurs Child Young People, 14-19.
Finocchi, F., Pelloni, M., Balercia, G., Pallotti, F., Radicioni, A., Lenzi, A., . . . Paoli, D. (2020). Seminal plasma miRNAs in Klinefelter syndrome and in obstructive and non-obstructive azoospermia. Molecular Biology Reports, 4373-4382.
Franik, S., Smeets, D., van de Zande, G., Gomes, I., D'Hauwers, K., Braat, D., . . . Ramos, L. (2018).
Klinefelter syndrome and fertility-Impact of X-chromosomal inheritance on spermatogenesis. Andrologia.
Frühmesser, A., & Kotzot, D. (2012). Chromosomal variants in klinefelter syndrome. Sex Dev, 109- 123.
Gravholt, C., Jensen, G., Høst, C., & Bojesen, A. (2012). Body composition, metabolic syndrome and type 2 diabetes in Klinefelter syndrome. Acta Paediatr, 871-7.
Gravholt, C., Chang, S., Wallentin, M., Fedder, J., Moore, P., & Skakkebæk, A. (2018). Klinefelter Syndrome: Integrating Genetics, Neuropsychology, and Endocrinology. Journal of endocrinology , 389-423.
Gravholt, C., Tartaglia, N., & Disteche, C. (2020). Sex chromosome aneuploidies in 2020-The state of care and research in the world. Am J Med Genet C Semin Med Genet., 197-201.
Groth KA, S. A. (2013). Clinical review: Klinefelter syndrome--a clinical update. journal of clinical endocrinology and metabolism, 20-30.
Indirli, R., Profka, E., Castellano, E., & Goggi, G. (2021). Central hypogonadism in Klinefelter syndrome: report of two cases and review of the literature. J Endocrinol Invest., 459-470.
Kanakis, G., & Nieschlag, E. (2018). Klinefelter syndrome: more than hypogonadism. Metabolism, 135-144.
Li, X., Huang, S., Yuan, Y., Lu, Y., Zhang, D., Wang, X., . . . Dai, P. (2019). Detecting novel mutations and combined Klinefelter syndrome in Usher syndrome cases. Acta Otorrinolaringologica, 479-486.
Liu C, L. H. (2021). Paternal USP26 mutations raise Klinefelter syndrome risk in the offspring of mice and humans. The EMBO Journal , 1423-1433.
Mahyari E, G. J.-C. (2021). Comparative single-cell analysis of biopsies clarifies pathogenic mechanisms in Klinefelter syndrome. The American Journal of Human Genetics, 1924- 1945.
Maiburg, M., Repping, S., & Giltay, J. (2012). The genetic origin of Klinefelter syndrome and its effect on spermatogenesis. Fertility and Sterility, 253-60.
Navarro-Cobos, M., Balaton, B., & Brown, C. (2020). Genes that escape from X-chromosome inactivation: Potential contributors to Klinefelter syndrome. American Journal of Medical Genetics, 226-238.
Nieschlag, E., Werler, S., Wistuba, J., & Zitzmann, M. (2014). New approaches to the Klinefelter syndrome. Annales d'Endocrinologie, 88-97.
Özkent, M., & Balasar, Ö. (2021). A rare variant Klinefelter syndrome seen 40 years later: 47,X,del(Xq24),Y. andrologia.
Panula, S., Kurek, M., Kumar, P., Albalushi, H., & Padrell, S. (2019). Human induced pluripotent stem cells from two azoospermic patients with Klinefelter syndrome show similar X chromosome inactivation behavior to female pluripotent stem cells. Hum Reprod., 2297- 2310.
Peña, V., Kohn, T., & Herati, A. (2020). Genetic mutations contributing to non-obstructive azoospermia . Best Practice & Research Clinical Endocrinology & Metabolism.
Radellini, S., Guarnotta, V., Sciabica, V., Pizzolanti, G., & Giordano, C. (2022). Metabolic Profile in a Cohort of Young Sicilian Patients with Klinefelter's Syndrome: The Role of Irisin. Int J Endocrinol, 1134-1149.
Salemi, M., Cannarella, R., Cimino, L., Condorelli, R., Giurato, G., Marchese, G., . . . Calogero, A. (2021). GPR56 gene down-regulation in patients with Klinefelter Syndrome: a candidate for infertility? Minerva Endocrinology, 384-388.
Samango-Sprouse, C., Keen, C., Sadeghin, T., & Gropman, A. (2017). The benefits and limitations of cell-free DNA screening for 47, XXY (Klinefelter syndrome). Prenatal Diagnosis, 497-501.
Samplaski, M., Kirk, L., & Grober, E. (2014). Phenotypic differences in mosaic Klinefelter patients as compared with non-mosaic Klinefelter patients. Fertil Steril., 950-955.
Skakkebaek, A., Viuff, M., Nielsen, M., & Gravholt, C. (2020). Epigenetics and genomics in Klinefelter syndrome. American Journal of Medical Genetics, 216-225.
Skakkebæk, A., Wallentin, M., & Gravholt, C. (2021). Klinefelter syndrome or testicular dysgenesis: Genetics, endocrinology, and neuropsychology. Handbook of Clinical Neurology, 445-462.
Spaziani, M., & Radicioni, F. (2020). Metabolic and cardiovascular risk factors in Klinefelter syndrome. Am J Med Genet C Semin Med Genet, 334-343.
Stouffs, K., Gheldof, A., Tournaye, H., Vandermaelen, D., Bonduelle, M., Lissens, W., & Seneca, S. (2016). Sertoli Cell-Only Syndrome: Behind the Genetic Scenes. BioMed Research International.
Tao, Y., & Shuoning, S. (2021). Glucose metabolic disorder in Klinefelter syndrome: a retrospective analysis in a single Chinese hospital and literature review. BMC Endocr Disord, 239-44.
Tong, J., Zhao, X., Wan, A., & Zhang, T. (2021). PGT or ICSI? The impression of NGS-based PGT outcomes in nonmosaic Klinefelter syndrome. Asian Journal of Andrology, 621-626Tong J, Zhao XM, Wan AR, Zhang T.
Vloeberghs, V., Verheyen, G., Santos-Ribeiro, S., Staessen, C., Verpoest, W., Gies, I., & Tournaye, H. (2018). Is genetic fatherhood within reach for all azoospermic Klinefelter men? PLOS ONE.
Willems, M., Gies, I., & Van Saen, D. (2020). Germ cell loss in Klinefelter syndrome: When and why? American Journal of Medical Genetics, 356-370.
Winge, S., Soraggi, S., Schierup, M., Rajpert-De Meyts, E., & Almstrup, K. (2020). Integration and reanalysis of transcriptomics and methylomics data derived from blood and testis tissue of
men with 47,XXY Klinefelter syndrome indicates the primary involvement of Sertoli cells in the testicular pathogenesis. The American Journal of Human Genetics, 239-255.
Wistuba, J., Beumer, C., Brehm, R., & Gromoll, J. (2020). 41,XX Y * male mice: An animal model for Klinefelter syndrome. American Journal of Medical Genetics, 267-278.
Yang, X., Wang, J., Nai, Z., & Yang, Y. (2021). Klinefelter syndrome: Advances in research. National journal of andrology, 269-273.
Yu, Z., Yang, J., & Liu, J. (2017). Microdissection testicular sperm extraction for patients with non- mosaic Klinefelter's syndrome: An update. National journal of andrology, 842-847.
Downloads
Publicado
-
Resumo1638
-
PDF (Español)1005
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Diana Katerine Guevara Márquez, Germán Augusto Méndez García
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.